v<-365*(1/4)
x<-pnorm(100-100,mean = 0,sd = sqrt(v),lower.tail = FALSE)
x
## [1] 0.5
v<-365*(1/4)
x<-pnorm(110-100,mean = 0,sd = sqrt(v),lower.tail = FALSE)
x
## [1] 0.1475849
v<-365*(1/4)
x<-pnorm(120-100,mean = 0,sd = sqrt(v),lower.tail = FALSE)
x
## [1] 0.01814355
\(g(t)=\Sigma _{ j=0 }^{ n }e^{ tj }(_{ j }^{ n })p^{ j }q^{ n-j }\)
\(g(t)=\Sigma _{ j=0 }^{ n }(_{ j }^{ n })(pe^{ t })^{ j }q^{ ^{ n-j } }\)
\(g(t)=(pe^{ t }+q)^{ n }\)
\(g'(t)=n(pe^{ t }+q)^{ n-1 }pe^{ t }\)
\(g''(t)=n(n-1)(pe^{ t }+q)(pe^{ t })^{ 2 }+n(pe^{ t }+q)^{ n }pe^{ t }\)
\(g'(0)=n(p+q)^{ n-1 }p=np\)
\(g''(0)=n(n-1)p^2+np\)
\(\mu =\mu _{ 1 }=g'(0)=np\)
\(σ^{ 2 }=\mu _{ 2 }-\mu _{ 1 }^{ 2 }=g"(0)-g'(0)^{ 2 }\)
\(σ^{ 2 }=n(n-1)p^{ 2 }+np-(np)^{ 2 }\)
\(σ^{ 2 }=np((np-p)+1-np)\)
\(σ^{ 2 }=np(1-p)\)
\(g(t)=∫_{ 0 }^{ \infty }e^{ tx }λe^{ -λe }dx\)
\(g(t)=\frac { λe^{ (t-λ)x } }{ t-λ } |_{ 0 }^{ ∞ }\)
\(g(t)=\frac { λ }{ λ-t }\)
\(g(t)=\frac { λ }{ (λ-t)^{ 2 } }\)
\(g(t)=\frac { λ }{ λ^{ 2 } } =\frac { 1 }{ λ }\)
\(g''(t)=\frac { 2λ }{ (λ-t)^{ 3 } }\)
\(g''(0)=\frac { 2λ }{ λ^{ 3 } } =\frac { 2 }{ λ^{ 2 } }\)
\(\mu =g'(0)=λ^{ -1 }\)
\(σ^{ 2 }=g''(0)-g'(0)^{ 2 }=\frac { 2 }{ λ^{ 2 } } =\frac { 1 }{ λ^{ 2 } } =λ^{ -2 }\)