#Loading the dataset that has been reset into a long version
data.test4 <- read.csv("/Volumes/TOSHIBA EXT/Dropbox/ADULT STUDY/adult_study011615.csv")
#Creating a new variable that is the mean of all HAPPI questions
data.test4$HAPPI <- apply(data.test4[, c ("HAPPI1" ,"HAPPI2", "HAPPI3")], 1, mean, na.rm = TRUE)
library(reshape2); library(car)
## Warning: package 'car' was built under R version 3.1.2
data <- data.test4[,c("ID", "GROUP", "wave", "HAPPI")]
data <- dcast(data, ID + GROUP ~ wave, mean, value.var = "HAPPI")
data[,3:5] <- apply(data[,3:5],2,function(x) recode(x, "NaN = NA") )
data2 <- as.data.frame(mapply(c,data[,1:4], data[,c(1:3,5)]))
data2$wave <- rep(1:2, each=89)
names(data2) <- c("ID", "GROUP", "BASELINE", "HAPPI", "WAVE")
Drop the cases where participants did not complete the intervention completely
#data2 <- data2[-c(which(data2$GROUP ==2)),]
Intention to treat model (ITT) where we keep the cases who dropped out and did not complete the study (http://en.wikipedia.org/wiki/Intention-to-treat_analysis).
data2[which(data2$GROUP ==2), "GROUP"] <- 1
For lme to work GROUP and ID need to be seen as factors
data2$GROUP <-as.factor(data2$GROUP)
data2$ID <-as.factor(data2$ID)
Load the psych package
library(psych)
##
## Attaching package: 'psych'
##
## The following object is masked from 'package:car':
##
## logit
Describe the HAPPI variable by the GROUP variable
describeBy(data2[,3:4], group = data2$GROUP)
## group: 0
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 86 5.03 1.32 5.33 5.16 0.99 2 7 5 -0.92
## HAPPI 2 59 5.23 1.24 5.33 5.37 0.99 1 7 6 -1.31
## kurtosis se
## BASELINE -0.11 0.14
## HAPPI 1.72 0.16
## --------------------------------------------------------
## group: 1
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 88 4.83 1.32 4.67 4.85 1.48 1.67 7 5.33 -0.1
## HAPPI 2 54 5.72 0.81 5.67 5.73 0.99 4.00 7 3.00 0.0
## kurtosis se
## BASELINE -0.68 0.14
## HAPPI -0.88 0.11
Create a plot that visualizes HAPPI variable by the GROUP variable
library(ggplot2)
##
## Attaching package: 'ggplot2'
##
## The following object is masked from 'package:psych':
##
## %+%
Take a look at the residuals
residual <- lm(HAPPI ~ BASELINE, data=data2)$residual
Plot the residuals to see that they are random
plot(density(residual))# A density plot
qqnorm(residual) # A quantile normal plot to checking normality
qqline(residual)
Checking the different between intervention and control groups residuals. This allows us to control for individual unsystematic differences.
data2$residual <- NA
sel1 <- which(!is.na(data2$HAPPI))
sel2 <- which(!is.na(data2$BASELINE))
data2$residual[intersect(sel1,sel2)] <- residual
qplot(GROUP, HAPPI, data=data2, geom="boxplot")
## Warning: Removed 65 rows containing non-finite values (stat_boxplot).
Plot of the difference between intervention and control groups.
qplot(GROUP, residual, data=data2, geom="boxplot")
## Warning: Removed 69 rows containing non-finite values (stat_boxplot).
# Load the nlme package
library(nlme)
Two way repeated measures Graphing the Two-Way Interaction.
with(data2, boxplot(HAPPI ~ WAVE + GROUP))
with(data2, boxplot(residual ~ WAVE + GROUP))
Comparing Basline to Wave 2 and 3 by Group.
fullModel <- lme(HAPPI ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data2, method = "ML", na.action = "na.omit")
Explanation of significance:
We asses the significance of our models by comparing them from the baseline model using the anova() function.
(Intercept): Where everything is 0
GROUP1: Is there a difference between group. If it is significant than there is a difference and the treatment had an effect.
WAVE: Asseses whether the effects gets bigger beteen time 2 and 3 (does not have to be significant)
BASELINE: Should not be significant. If it is then it shows that there is a difference between groups before the treatment.
GROUP1:WAVE: If this is significant then it means that the effect was either fleeting or it happened after the treatment i.e. between time 2 and 3.
summary(fullModel)
## Linear mixed-effects model fit by maximum likelihood
## Data: data2
## AIC BIC logLik
## 242.5 261.4 -114.3
##
## Random effects:
## Formula: ~1 | ID
## (Intercept) Residual
## StdDev: 0.6351 0.4394
##
## Fixed effects: HAPPI ~ GROUP * WAVE + BASELINE
## Value Std.Error DF t-value p-value
## (Intercept) 2.4086 0.4120 66 5.847 0.0000
## GROUP1 0.2790 0.3210 66 0.869 0.3879
## WAVE -0.1458 0.1319 38 -1.106 0.2759
## BASELINE 0.5707 0.0690 66 8.277 0.0000
## GROUP1:WAVE 0.2483 0.1923 38 1.291 0.2045
## Correlation:
## (Intr) GROUP1 WAVE BASELI
## GROUP1 -0.369
## WAVE -0.414 0.562
## BASELINE -0.849 0.012 -0.029
## GROUP1:WAVE 0.288 -0.825 -0.686 0.014
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -2.31795 -0.35922 0.02431 0.41902 1.90238
##
## Number of Observations: 109
## Number of Groups: 69
Table with P-values
| Value | Std.Error | DF | t-value | p-value | |
|---|---|---|---|---|---|
| (Intercept) | 2.4086 | 0.4120 | 66.0000 | 5.8468 | 0.0000 |
| GROUP1 | 0.2790 | 0.3210 | 66.0000 | 0.8692 | 0.3879 |
| WAVE | -0.1458 | 0.1319 | 38.0000 | -1.1055 | 0.2759 |
| BASELINE | 0.5707 | 0.0690 | 66.0000 | 8.2770 | 0.0000 |
| GROUP1:WAVE | 0.2483 | 0.1923 | 38.0000 | 1.2911 | 0.2045 |
``` Table with confidence intervals
| est. | lower | upper | |
|---|---|---|---|
| (Intercept) | 2.4086 | 1.6052 | 3.2120 |
| GROUP1 | 0.2790 | -0.3470 | 0.9051 |
| WAVE | -0.1458 | -0.4066 | 0.1150 |
| BASELINE | 0.5707 | 0.4363 | 0.7052 |
| GROUP1:WAVE | 0.2483 | -0.1320 | 0.6286 |