library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
library(readr)
library(plotly)
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
library(RColorBrewer)
setwd("C:/Users/Don A/Documents/Don's files/MC")
nations <- read_csv("nations.csv")
## Parsed with column specification:
## cols(
## iso2c = col_character(),
## iso3c = col_character(),
## country = col_character(),
## year = col_double(),
## gdp_percap = col_double(),
## population = col_double(),
## birth_rate = col_double(),
## neonat_mortal_rate = col_double(),
## region = col_character(),
## income = col_character()
## )
nations_area <- nations %>%
mutate(gdp_percap = gdp_percap * population / 1000000000000) %>%
group_by(region, year) %>%
summarise(sum = sum(gdp_percap, na.rm = TRUE))
p2 <- ggplot(nations_area, aes(x = year, y = sum, fill = region)) +
scale_fill_brewer(palette = "Set2") +
ylab("GDP ($ trillion)") +
theme_minimal(base_size = 12) +
geom_area(color = "white") +
ggtitle("GDP by World Bank Region")
ggplotly(p2)