Repeated Measures for LOT

#Loading the dataset that has been reset into a long version
data.test4 <- read.csv("/Volumes/TOSHIBA EXT/Dropbox/ADULT STUDY/adult_study011615.csv")
# Load the psych package
library(psych)

Creating a new variable that is the mean of all positive purpose LOT questions

items <- grep("LOTR[0-9]", names(data.test4), value=TRUE)
scaleKey <- c(1, 1, -1, 1, 1, 1, -1, 1, -1, 1)
data.test4[,items] <- apply(data.test4[,items],2, as.numeric)
data.test4$LOT <- scoreItems(scaleKey, items = data.test4[, items])$score
library(reshape2); library(car)
## Warning: package 'car' was built under R version 3.1.2
## 
## Attaching package: 'car'
## 
## The following object is masked from 'package:psych':
## 
##     logit
data <- data.test4[,c("ID", "GROUP", "wave", "LOT")]
data <- dcast(data, ID + GROUP ~ wave, mean, value.var = "LOT")
data[,3:5] <- apply(data[,3:5],2,function(x) recode(x, "NaN = NA") )

Create new data set with ID Group basline LOT and wave so that we have Baseline, time 1 and 2 to compare to

data2 <- as.data.frame(mapply(c,data[,1:4], data[,c(1:3,5)]))
data2$wave <- rep(1:2, each=89)
names(data2) <- c("ID", "GROUP", "BASELINE", "LOT", "WAVE")

Drop the cases where participants did not complete the intervention completely

#data2 <- data2[-c(which(data2$GROUP ==2)),]

Intention to treat model (ITT) where we keep the cases who dropped out and did not complete the study (http://en.wikipedia.org/wiki/Intention-to-treat_analysis).

data2[which(data2$GROUP ==2), "GROUP"] <- 1

For lme to work GROUP and ID need to be seen as factors

data2$GROUP <-as.factor(data2$GROUP)
data2$ID <-as.factor(data2$ID)

Describe the LOT variable by the GROUP variable

describeBy(data2[,3:4], group = data2$GROUP)
## group: 0
##          vars  n mean   sd median trimmed  mad min max range skew kurtosis
## BASELINE    1 86 2.44 0.79    2.5    2.39 0.89 1.1 4.3   3.2 0.43    -0.47
## LOT         2 59 2.19 0.80    2.1    2.11 0.74 1.1 4.2   3.1 0.86    -0.17
##            se
## BASELINE 0.09
## LOT      0.10
## -------------------------------------------------------- 
## group: 1
##          vars  n mean   sd median trimmed  mad min max range skew kurtosis
## BASELINE    1 88 2.38 0.72   2.30    2.35 0.82 1.1   4   2.9 0.37    -0.69
## LOT         2 54 1.94 0.57   1.85    1.88 0.52 1.1   4   2.9 1.22     1.97
##            se
## BASELINE 0.08
## LOT      0.08

Create a plot that visualizes LOT variable by the GROUP variable

library(ggplot2)
## 
## Attaching package: 'ggplot2'
## 
## The following object is masked from 'package:psych':
## 
##     %+%

Take a look at the residuals

residual <- lm(LOT ~ BASELINE, data=data2)$residual

Plot the residuals to see that they are random

plot(density(residual))# A density plot

plot of chunk unnamed-chunk-10

qqnorm(residual) # A quantile normal plot to checking normality
qqline(residual)

plot of chunk unnamed-chunk-10 Checking the different between intervention and control groups residuals. This allows us to control for individual unsystematic differences.

data2$residual <- NA
sel1 <- which(!is.na(data2$LOT)) 
sel2 <- which(!is.na(data2$BASELINE))
data2$residual[intersect(sel1,sel2)] <- residual
qplot(GROUP, LOT, data=data2, geom="boxplot")
## Warning: Removed 65 rows containing non-finite values (stat_boxplot).

plot of chunk unnamed-chunk-11 Plot of the difference between intervention and control groups.

qplot(GROUP, residual, data=data2, geom="boxplot")
## Warning: Removed 69 rows containing non-finite values (stat_boxplot).

plot of chunk unnamed-chunk-12 Two way repeated measures ======================================================== Graphing the Two-Way Interaction. Both LOT and the Residuals

# Load the nlme package
library(nlme)
with(data2, boxplot(LOT ~ WAVE + GROUP))

plot of chunk unnamed-chunk-13

with(data2, boxplot(residual ~ WAVE + GROUP))

plot of chunk unnamed-chunk-13

Linear Mixed-Effects Model

Comparing Basline to Wave 2 and 3 by Group.

fullModel <- lme(LOT ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data2, method = "ML", na.action = "na.omit")
Results

Explanation of significance:

We asses the significance of our models by comparing them from the baseline model using the anova() function.
(Intercept): Where everything is 0
GROUP1: Is there a difference between group. If it is significant than there is a difference and the treatment had an effect.
WAVE: Asseses whether the effects gets bigger beteen time 2 and 3 (does not have to be significant)
BASELINE: Should not be significant. If it is then it shows that there is a difference between groups before the treatment.
GROUP1:WAVE: If this is significant then it means that the effect was either fleeting or it happened after the treatment i.e. between time 2 and 3.

summary(fullModel)
## Linear mixed-effects model fit by maximum likelihood
##  Data: data2 
##     AIC   BIC logLik
##   217.5 236.3 -101.7
## 
## Random effects:
##  Formula: ~1 | ID
##         (Intercept) Residual
## StdDev:      0.3869   0.5005
## 
## Fixed effects: LOT ~ GROUP * WAVE + BASELINE 
##               Value Std.Error DF t-value p-value
## (Intercept)  1.2002    0.3123 66   3.843  0.0003
## GROUP1       0.0477    0.3245 66   0.147  0.8837
## WAVE         0.0637    0.1436 38   0.443  0.6600
## BASELINE     0.3966    0.0910 66   4.357  0.0000
## GROUP1:WAVE -0.1890    0.2103 38  -0.899  0.3745
##  Correlation: 
##             (Intr) GROUP1 WAVE   BASELI
## GROUP1      -0.513                     
## WAVE        -0.668  0.614              
## BASELINE    -0.711  0.052  0.047       
## GROUP1:WAVE  0.457 -0.903 -0.683 -0.032
## 
## Standardized Within-Group Residuals:
##      Min       Q1      Med       Q3      Max 
## -1.91498 -0.48795 -0.09516  0.38488  2.66042 
## 
## Number of Observations: 109
## Number of Groups: 69

Table with P-values

Value Std.Error DF t-value p-value
(Intercept) 1.2002 0.3123 66.0000 3.8433 0.0003
GROUP1 0.0477 0.3245 66.0000 0.1469 0.8837
WAVE 0.0637 0.1436 38.0000 0.4434 0.6600
BASELINE 0.3966 0.0910 66.0000 4.3570 0.0000
GROUP1:WAVE -0.1890 0.2103 38.0000 -0.8986 0.3745

``` Table with confidence intervals

est. lower upper
(Intercept) 1.2002 0.5912 1.8092
GROUP1 0.0477 -0.5852 0.6805
WAVE 0.0637 -0.2203 0.3476
BASELINE 0.3966 0.2191 0.5741
GROUP1:WAVE -0.1890 -0.6048 0.2269