Sumukha Venkatesha Murthy (s3797866)
Anilkumar Lingaraj Biradar (s3798024)
Amogha Amaresh (s3789160)
Last updated: 27 October, 2019
admit <- read_csv("Admission_Predict.csv")
#Descriptive Statisctics for CGPA
admit %>%summarise(Min = min(CGPA,na.rm = TRUE),
Q1 = quantile(CGPA,probs = .25,na.rm = TRUE),
Median = median(CGPA, na.rm = TRUE),
Q3 = quantile(CGPA,probs = .75,na.rm = TRUE),
Max = max(CGPA,na.rm = TRUE),
Mean = mean(CGPA, na.rm = TRUE),
SD = sd(CGPA, na.rm = TRUE),n = n(),Missing = sum(is.na(CGPA))) -> table1
knitr::kable(table1)| Min | Q1 | Median | Q3 | Max | Mean | SD | n | Missing |
|---|---|---|---|---|---|---|---|---|
| 6.8 | 8.17 | 8.61 | 9.0625 | 9.92 | 8.598925 | 0.5963171 | 400 | 0 |
#Descriptive Statisctics for GRE Score
admit %>%summarise(Min = min(`GRE Score`,na.rm = TRUE),
Q1 = quantile(`GRE Score`,probs = .25,na.rm = TRUE),
Median = median(`GRE Score`, na.rm = TRUE),
Q3 = quantile(`GRE Score`,probs = .75,na.rm = TRUE),
Max = max(`GRE Score`,na.rm = TRUE),
Mean = mean(`GRE Score`, na.rm = TRUE),
SD = sd(`GRE Score`, na.rm = TRUE),n = n(),Missing = sum(is.na(`GRE Score`))) -> table2
knitr::kable(table2)| Min | Q1 | Median | Q3 | Max | Mean | SD | n | Missing |
|---|---|---|---|---|---|---|---|---|
| 290 | 308 | 317 | 325 | 340 | 316.8075 | 11.47365 | 400 | 0 |
## [1] 59
Figure 1
Figure 2
##
## Call:
## lm(formula = `GRE Score` ~ CGPA, data = admit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.1178 -4.2131 0.4833 3.7378 26.9171
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 177.6010 4.6387 38.29 <2e-16 ***
## CGPA 16.1852 0.5379 30.09 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.334 on 397 degrees of freedom
## Multiple R-squared: 0.6952, Adjusted R-squared: 0.6944
## F-statistic: 905.4 on 1 and 397 DF, p-value: < 2.2e-16
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 177.60099 4.638680 38.28697 2.408109e-135
## CGPA 16.18524 0.537905 30.08940 1.843967e-104
## 2.5 % 97.5 %
## (Intercept) 168.48154 186.72043
## CGPA 15.12774 17.24274
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 177.60099 4.638680 38.28697 2.408109e-135
## CGPA 16.18524 0.537905 30.08940 1.843967e-104
## 2.5 % 97.5 %
## (Intercept) 168.48154 186.72043
## CGPA 15.12774 17.24274
ggplot(admit, aes(x=CGPA, y=`GRE Score`))+
geom_point(color="deepskyblue3" )+
geom_smooth(method=lm,se=FALSE)Figure 3
Figure 4 Figure 5
Figure 6 Figure 7
Thus from the findings of the above investigation conducted, Simple Linear Regression found that there is a statistically significant positive linear relationship between a CGPA and GRE Score. Thus, the investigation concludes as the CGPA score increases, the GRE Score also rises.
Linearity, photograph, viewed on 24 October 2019
https://linearity.be/wp-content/uploads/2017/09/linearity8.jpg
Graduate Admission, Admission_Predict CSV , Graduate Admission Dataset , Viewed on 22nd October 2019 https://www.kaggle.com/mohansacharya/graduate-admissions.
Mohan S Acharya, Asfia Armaan, Aneeta S Antony : A Comparison of Regression Models for Prediction of Graduate Admissions, IEEE International Conference on Computational Intelligence in Data Science 2019