Sri Sainee Thirumurugan . s3774307
Last updated: 24 October, 2019
airbnb %>% summarise(Min = min(Price, na.rm = TRUE),
Q1 = quantile(Price, probs = .25, na.rm = TRUE),
Median = median(Price, na.rm = TRUE),
Q3 = quantile(Price, probs = .75, na.rm = TRUE),
Max = max(Price, na.rm = TRUE),
Mean = mean(Price, na.rm = TRUE),
SD = sd(Price, na.rm = TRUE),
n = n(),
Missing = sum(is.na(Price))) -> summary_table
knitr::kable(summary_table)| Min | Q1 | Median | Q3 | Max | Mean | SD | n | Missing |
|---|---|---|---|---|---|---|---|---|
| 10 | 80 | 125 | 195 | 10000 | 163.5897 | 197.7855 | 30478 | 0 |
hist(airbnb$Price, breaks = 100)The Null Hypothesis for this case would be that the average New York Airbnb rental price is equal to $160.47
\[H_0: \mu = 160.47 \] The Alternate Hypothesis would be that the average New York Airbnb rental price is not equal to $160.47
\[H_A: \mu \ne 160.47\]
# One sample t-test
t.test(airbnb$Price, mu = 160.47, conf.level = .95, alternative="two.sided")##
## One Sample t-test
##
## data: airbnb$Price
## t = 2.7537, df = 30477, p-value = 0.005896
## alternative hypothesis: true mean is not equal to 160.47
## 95 percent confidence interval:
## 161.3692 165.8103
## sample estimates:
## mean of x
## 163.5897