The goal is to discover the public health and economic impact that storms and severe weather poses to the US

Xtrangeloop

October 24, 2019

Synopsis

Storms and other severe weather events can cause extreme damage to both public health and the economy of communities and municipalities. In this report we explore the U.S. National Oceanic and Atmospheric Administration’s (NOAA) storm database to understand which types of weather events damaged the public health and economy the most between 1950 and 2011.

This project revealed that tornados caused the most direct threat to public health, while floods had the highest economic impact.

Data Processing

First, we prepared some basic libraries for clenaning and sorting data, and for plotting. Then, we read in NOAA’s Storm Database and explored the data with dim, head, names, and summary.

#Load the libraries
library(ggplot2)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(tidyr)

##Read the Data
Storm <- read.csv("repdata_data_StormData.csv")
dim(Storm)
## [1] 902297     37
head(Storm)
##   STATE__           BGN_DATE BGN_TIME TIME_ZONE COUNTY COUNTYNAME STATE
## 1       1  4/18/1950 0:00:00     0130       CST     97     MOBILE    AL
## 2       1  4/18/1950 0:00:00     0145       CST      3    BALDWIN    AL
## 3       1  2/20/1951 0:00:00     1600       CST     57    FAYETTE    AL
## 4       1   6/8/1951 0:00:00     0900       CST     89    MADISON    AL
## 5       1 11/15/1951 0:00:00     1500       CST     43    CULLMAN    AL
## 6       1 11/15/1951 0:00:00     2000       CST     77 LAUDERDALE    AL
##    EVTYPE BGN_RANGE BGN_AZI BGN_LOCATI END_DATE END_TIME COUNTY_END
## 1 TORNADO         0                                               0
## 2 TORNADO         0                                               0
## 3 TORNADO         0                                               0
## 4 TORNADO         0                                               0
## 5 TORNADO         0                                               0
## 6 TORNADO         0                                               0
##   COUNTYENDN END_RANGE END_AZI END_LOCATI LENGTH WIDTH F MAG FATALITIES
## 1         NA         0                      14.0   100 3   0          0
## 2         NA         0                       2.0   150 2   0          0
## 3         NA         0                       0.1   123 2   0          0
## 4         NA         0                       0.0   100 2   0          0
## 5         NA         0                       0.0   150 2   0          0
## 6         NA         0                       1.5   177 2   0          0
##   INJURIES PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP WFO STATEOFFIC ZONENAMES
## 1       15    25.0          K       0                                    
## 2        0     2.5          K       0                                    
## 3        2    25.0          K       0                                    
## 4        2     2.5          K       0                                    
## 5        2     2.5          K       0                                    
## 6        6     2.5          K       0                                    
##   LATITUDE LONGITUDE LATITUDE_E LONGITUDE_ REMARKS REFNUM
## 1     3040      8812       3051       8806              1
## 2     3042      8755          0          0              2
## 3     3340      8742          0          0              3
## 4     3458      8626          0          0              4
## 5     3412      8642          0          0              5
## 6     3450      8748          0          0              6
names(Storm)
##  [1] "STATE__"    "BGN_DATE"   "BGN_TIME"   "TIME_ZONE"  "COUNTY"    
##  [6] "COUNTYNAME" "STATE"      "EVTYPE"     "BGN_RANGE"  "BGN_AZI"   
## [11] "BGN_LOCATI" "END_DATE"   "END_TIME"   "COUNTY_END" "COUNTYENDN"
## [16] "END_RANGE"  "END_AZI"    "END_LOCATI" "LENGTH"     "WIDTH"     
## [21] "F"          "MAG"        "FATALITIES" "INJURIES"   "PROPDMG"   
## [26] "PROPDMGEXP" "CROPDMG"    "CROPDMGEXP" "WFO"        "STATEOFFIC"
## [31] "ZONENAMES"  "LATITUDE"   "LONGITUDE"  "LATITUDE_E" "LONGITUDE_"
## [36] "REMARKS"    "REFNUM"
summary(Storm)
##     STATE__                  BGN_DATE             BGN_TIME     
##  Min.   : 1.0   5/25/2011 0:00:00:  1202   12:00:00 AM: 10163  
##  1st Qu.:19.0   4/27/2011 0:00:00:  1193   06:00:00 PM:  7350  
##  Median :30.0   6/9/2011 0:00:00 :  1030   04:00:00 PM:  7261  
##  Mean   :31.2   5/30/2004 0:00:00:  1016   05:00:00 PM:  6891  
##  3rd Qu.:45.0   4/4/2011 0:00:00 :  1009   12:00:00 PM:  6703  
##  Max.   :95.0   4/2/2006 0:00:00 :   981   03:00:00 PM:  6700  
##                 (Other)          :895866   (Other)    :857229  
##    TIME_ZONE          COUNTY           COUNTYNAME         STATE       
##  CST    :547493   Min.   :  0.0   JEFFERSON :  7840   TX     : 83728  
##  EST    :245558   1st Qu.: 31.0   WASHINGTON:  7603   KS     : 53440  
##  MST    : 68390   Median : 75.0   JACKSON   :  6660   OK     : 46802  
##  PST    : 28302   Mean   :100.6   FRANKLIN  :  6256   MO     : 35648  
##  AST    :  6360   3rd Qu.:131.0   LINCOLN   :  5937   IA     : 31069  
##  HST    :  2563   Max.   :873.0   MADISON   :  5632   NE     : 30271  
##  (Other):  3631                   (Other)   :862369   (Other):621339  
##                EVTYPE         BGN_RANGE           BGN_AZI      
##  HAIL             :288661   Min.   :   0.000          :547332  
##  TSTM WIND        :219940   1st Qu.:   0.000   N      : 86752  
##  THUNDERSTORM WIND: 82563   Median :   0.000   W      : 38446  
##  TORNADO          : 60652   Mean   :   1.484   S      : 37558  
##  FLASH FLOOD      : 54277   3rd Qu.:   1.000   E      : 33178  
##  FLOOD            : 25326   Max.   :3749.000   NW     : 24041  
##  (Other)          :170878                      (Other):134990  
##          BGN_LOCATI                  END_DATE             END_TIME     
##               :287743                    :243411              :238978  
##  COUNTYWIDE   : 19680   4/27/2011 0:00:00:  1214   06:00:00 PM:  9802  
##  Countywide   :   993   5/25/2011 0:00:00:  1196   05:00:00 PM:  8314  
##  SPRINGFIELD  :   843   6/9/2011 0:00:00 :  1021   04:00:00 PM:  8104  
##  SOUTH PORTION:   810   4/4/2011 0:00:00 :  1007   12:00:00 PM:  7483  
##  NORTH PORTION:   784   5/30/2004 0:00:00:   998   11:59:00 PM:  7184  
##  (Other)      :591444   (Other)          :653450   (Other)    :622432  
##    COUNTY_END COUNTYENDN       END_RANGE           END_AZI      
##  Min.   :0    Mode:logical   Min.   :  0.0000          :724837  
##  1st Qu.:0    NA's:902297    1st Qu.:  0.0000   N      : 28082  
##  Median :0                   Median :  0.0000   S      : 22510  
##  Mean   :0                   Mean   :  0.9862   W      : 20119  
##  3rd Qu.:0                   3rd Qu.:  0.0000   E      : 20047  
##  Max.   :0                   Max.   :925.0000   NE     : 14606  
##                                                 (Other): 72096  
##            END_LOCATI         LENGTH              WIDTH         
##                 :499225   Min.   :   0.0000   Min.   :   0.000  
##  COUNTYWIDE     : 19731   1st Qu.:   0.0000   1st Qu.:   0.000  
##  SOUTH PORTION  :   833   Median :   0.0000   Median :   0.000  
##  NORTH PORTION  :   780   Mean   :   0.2301   Mean   :   7.503  
##  CENTRAL PORTION:   617   3rd Qu.:   0.0000   3rd Qu.:   0.000  
##  SPRINGFIELD    :   575   Max.   :2315.0000   Max.   :4400.000  
##  (Other)        :380536                                         
##        F               MAG            FATALITIES          INJURIES        
##  Min.   :0.0      Min.   :    0.0   Min.   :  0.0000   Min.   :   0.0000  
##  1st Qu.:0.0      1st Qu.:    0.0   1st Qu.:  0.0000   1st Qu.:   0.0000  
##  Median :1.0      Median :   50.0   Median :  0.0000   Median :   0.0000  
##  Mean   :0.9      Mean   :   46.9   Mean   :  0.0168   Mean   :   0.1557  
##  3rd Qu.:1.0      3rd Qu.:   75.0   3rd Qu.:  0.0000   3rd Qu.:   0.0000  
##  Max.   :5.0      Max.   :22000.0   Max.   :583.0000   Max.   :1700.0000  
##  NA's   :843563                                                           
##     PROPDMG          PROPDMGEXP        CROPDMG          CROPDMGEXP    
##  Min.   :   0.00          :465934   Min.   :  0.000          :618413  
##  1st Qu.:   0.00   K      :424665   1st Qu.:  0.000   K      :281832  
##  Median :   0.00   M      : 11330   Median :  0.000   M      :  1994  
##  Mean   :  12.06   0      :   216   Mean   :  1.527   k      :    21  
##  3rd Qu.:   0.50   B      :    40   3rd Qu.:  0.000   0      :    19  
##  Max.   :5000.00   5      :    28   Max.   :990.000   B      :     9  
##                    (Other):    84                     (Other):     9  
##       WFO                                       STATEOFFIC    
##         :142069                                      :248769  
##  OUN    : 17393   TEXAS, North                       : 12193  
##  JAN    : 13889   ARKANSAS, Central and North Central: 11738  
##  LWX    : 13174   IOWA, Central                      : 11345  
##  PHI    : 12551   KANSAS, Southwest                  : 11212  
##  TSA    : 12483   GEORGIA, North and Central         : 11120  
##  (Other):690738   (Other)                            :595920  
##                                                                                                                                                                                                     ZONENAMES     
##                                                                                                                                                                                                          :594029  
##                                                                                                                                                                                                          :205988  
##  GREATER RENO / CARSON CITY / M - GREATER RENO / CARSON CITY / M                                                                                                                                         :   639  
##  GREATER LAKE TAHOE AREA - GREATER LAKE TAHOE AREA                                                                                                                                                       :   592  
##  JEFFERSON - JEFFERSON                                                                                                                                                                                   :   303  
##  MADISON - MADISON                                                                                                                                                                                       :   302  
##  (Other)                                                                                                                                                                                                 :100444  
##     LATITUDE      LONGITUDE        LATITUDE_E     LONGITUDE_    
##  Min.   :   0   Min.   :-14451   Min.   :   0   Min.   :-14455  
##  1st Qu.:2802   1st Qu.:  7247   1st Qu.:   0   1st Qu.:     0  
##  Median :3540   Median :  8707   Median :   0   Median :     0  
##  Mean   :2875   Mean   :  6940   Mean   :1452   Mean   :  3509  
##  3rd Qu.:4019   3rd Qu.:  9605   3rd Qu.:3549   3rd Qu.:  8735  
##  Max.   :9706   Max.   : 17124   Max.   :9706   Max.   :106220  
##  NA's   :47                      NA's   :40                     
##                                            REMARKS           REFNUM      
##                                                :287433   Min.   :     1  
##                                                : 24013   1st Qu.:225575  
##  Trees down.\n                                 :  1110   Median :451149  
##  Several trees were blown down.\n              :   568   Mean   :451149  
##  Trees were downed.\n                          :   446   3rd Qu.:676723  
##  Large trees and power lines were blown down.\n:   432   Max.   :902297  
##  (Other)                                       :588295

We decided to tackle Data Processing in two phases, each corresponding to our two questions, the type of weather most damaging to health and the economy.

The Danger Posed to Public Health

We extracted the subset of data requried to analyze the severe weather impact posed to public health, these included the columns:

#Extract the Events, Injuries, and Fatalities
Danger <- select(Storm, one_of(c("EVTYPE", "FATALITIES", "INJURIES")))

Next, we verified that the Fatalities and Injuries columns were numeric, and then added the two columns together under the title Health.Damage.

#Veryify that the Fatalities and Injuries are numbers
head(as.numeric(Danger$FATALITIES))
## [1] 0 0 0 0 0 0
head(as.numeric(Danger$INJURIES))
## [1] 15  0  2  2  2  6
#Combine the Fatalities and Injuries
Danger$HEALTH.DAMAGE <- Danger$FATALITIES + Danger$INJURIES

Next we prepped and cleaned the data. First extracting just the two main columns of the Weather Type and the Health Damage (the combined fatalities and injuries). Then, we removed all weather events that caused no public injury or fatality. Finally, we summed the public health concern by weather event and arranged the table by highest public health concern.

#Extract the Events and newly combined Health Damage
Danger <- select(Danger, one_of(c("EVTYPE", "HEALTH.DAMAGE")))

#Remove No Health Damage
Danger <- filter(Danger, HEALTH.DAMAGE>0)

#Aggregate the Health Damage by Event
Danger <- aggregate(HEALTH.DAMAGE~EVTYPE, Danger, sum)

#Sort by the most Health Damage
Danger <- arrange(Danger, desc(HEALTH.DAMAGE))

Next, we explored the data in order to grasp what kind of numbers and events we were dealing with. Afterwards, we decided to cut that data down to the weather events that meet or exceed the mean of damage to all public health. These numbers were a bit unruly, so for plotting purposes, we reduced them to thousands.

#Explore the Data dimensions
head(Danger$HEALTH.DAMAGE)
## [1] 96979  8428  7461  7259  6046  3037
quantile(Danger$HEALTH.DAMAGE)
##       0%      25%      50%      75%     100% 
##     1.00     1.75     5.00    44.25 96979.00
n_distinct(Danger$HEALTH.DAMAGE)
## [1] 80
mean(Danger$HEALTH.DAMAGE)
## [1] 707.6045
#Filter to all Health Damage greater than or equal to the mean
Danger <- filter(Danger, HEALTH.DAMAGE>=mean(Danger$HEALTH.DAMAGE))

#Reduce Economic Damage by a thousand
Danger$HEALTH.DAMAGE <- Danger$HEALTH.DAMAGE/1000

The Danger Posed to the Economy

We extracted the subset of data requried to analyze the severe weather impact posed to the economy, these included the columns:

#Extract the Events and the Crop and Property Damage along with their exponents 
Economy <- select(Storm, one_of(c("EVTYPE", "PROPDMG", "PROPDMGEXP", "CROPDMG", "CROPDMGEXP")))

Next, we verified that the two Exponent columns were characters, and then converted the contents appropriatel, i.e. H to 100, K to 1000, M to 100000, B to 1000000000, and we converted blanks to 1, so that when we multipled later our numbers wouldn’t go wonky.

#Verify the Exponents are characters
Economy$PROPDMGEXP <- as.character(Economy$PROPDMGEXP)
Economy$CROPDMGEXP <- as.character(Economy$CROPDMGEXP)

#Replace the exponents with numerical data
Economy$PROPDMGEXP[Economy$PROPDMGEXP == ""] <- "1"
Economy$PROPDMGEXP[Economy$PROPDMGEXP == "H"] <- "100"
Economy$PROPDMGEXP[Economy$PROPDMGEXP == "K"] <- "1000"
Economy$PROPDMGEXP[Economy$PROPDMGEXP == "M"] <- "1000000"
Economy$PROPDMGEXP[Economy$PROPDMGEXP == "B"] <- "1000000000"
Economy$CROPDMGEXP[Economy$CROPDMGEXP == ""] <- "1"
Economy$CROPDMGEXP[Economy$CROPDMGEXP == "H"] <- "100"
Economy$CROPDMGEXP[Economy$CROPDMGEXP == "K"] <- "1000"
Economy$CROPDMGEXP[Economy$CROPDMGEXP == "M"] <- "1000000"
Economy$CROPDMGEXP[Economy$CROPDMGEXP == "B"] <- "1000000000"  

Next, we verified that the Crop and Property and Exponents columns were numeric, so that we could start our math. We multiplied the Crop Damage by its Exponent, and the same for the Property Damage and its Exponent. Then, we added the columns together under the title Econ.Damage.

#Verify the Damage and Exponents are numeric
Economy$PROPDMGEXP <- as.numeric(Economy$PROPDMGEXP)
## Warning: NAs introduced by coercion
Economy$CROPDMGEXP <- as.numeric(Economy$CROPDMGEXP)
## Warning: NAs introduced by coercion
Economy$PROPDMG <- as.numeric(Economy$PROPDMG)
Economy$CROPDMG <- as.numeric(Economy$CROPDMG)

#Multiply the Property Damage with Exponent
Economy$PROP.DAMAGE <- Economy$PROPDMG*Economy$PROPDMGEXP
Economy$CROP.DAMAGE <- Economy$CROPDMG*Economy$CROPDMGEXP

#Combine the Crop and Property Damage
Economy$ECON.DAMAGE <- Economy$CROP.DAMAGE + Economy$PROP.DAMAGE

Next we continued to prepare and cleane the data. First extracting just the two main columns of the Weather Type and the Economy Damage (the combined crop and property damage). Then, we removed all weather events that caused no economic damage. Finally, we summed the economic damage by weather event and arranged the table by highest economic damage concern.

#Extract the Events and the newly combined Economy Damage
Economy <- select(Economy, one_of(c("EVTYPE", "ECON.DAMAGE")))

#Remove No Economic Damage
Economy <- filter(Economy, ECON.DAMAGE>0)

#Aggregate the Economic Damage by Event
Economy <- aggregate(ECON.DAMAGE~EVTYPE, Economy, sum)

#Sort by the most Economic Damage
Economy <- arrange(Economy, desc(ECON.DAMAGE))

Next, we explored the data in order to grasp what kind of numbers and events we were dealing with. Afterwards, we decided to cut that data down to the weather events that meet or exceed the mean of all economic damage to. These numbers were a bit unruly, so for plotting purposes, we reduced them to billions.

#Explore the Data dimensions
head(Economy$ECON.DAMAGE)
## [1] 150319678257  71913712800  57340614104  43323541000  18752708880
## [6]  17562129394
quantile(Economy$ECON.DAMAGE)
##           0%          25%          50%          75%         100% 
##           50        17250       242500      6360250 150319678257
n_distinct(Economy$ECON.DAMAGE)
## [1] 238
mean(Economy$ECON.DAMAGE)
## [1] 1118244564
#Filter to all Economic Damage greater than or equal to the mean
Economy <- filter(Economy, ECON.DAMAGE>=mean(Economy$ECON.DAMAGE))

#Reduce Economic Damage by a billion
Economy$ECON.DAMAGE <- Economy$ECON.DAMAGE/1000000000

Results

The Most Harmful Events with Respect to Population Health

The Data

#Explore the Data dimensions
head(Danger)
##           EVTYPE HEALTH.DAMAGE
## 1        TORNADO        96.979
## 2 EXCESSIVE HEAT         8.428
## 3      TSTM WIND         7.461
## 4          FLOOD         7.259
## 5      LIGHTNING         6.046
## 6           HEAT         3.037

The Graph

The Most Harmful Events with Respect to Economic Damage

The Data

#Explore the Data dimensions
head(Economy)
##              EVTYPE ECON.DAMAGE
## 1             FLOOD   150.31968
## 2 HURRICANE/TYPHOON    71.91371
## 3           TORNADO    57.34061
## 4       STORM SURGE    43.32354
## 5              HAIL    18.75271
## 6       FLASH FLOOD    17.56213

The Graph