ATIVIDADE 1

Gráfico e/ou estatística que incomoda.

O gráfico representado acima foi feito pelo INPE (Instituto Nacional de Pesquisas Espaciais), ainda em agosto de 2019, onde as queimadas da região amazônica teve seu maior número já registrado e visto nos útimos anos, veículos de informação sensacionalistas e que usam de fake news, utilizou de tal gráfico para representar que o respectivo ano é o que obteve menor registro de queimadas no Brasil. Porém, alguns pontos: o ano ainda não acabou, o que contradiz com a média de focos utilizadas com os outros anos (período de 1 ano), as informações então estão incompletas, invalidando esse comparativo. Outro foco que vale a pena comparar é sobre o que lidera ser no governo Lula, porém estamos no primeiro ano de governo Bolsonaro, onde o ano não acabou e em agosto esse número de queimadas estava representando uns 8 mil quase 9 contra os 14 mil aproximadamente de 2005. Então fica o questionamento do verdadeiro por quê esse gráfico foi lançado.

Atividade 2

Gráfico do Banco de Dados Pokémon

library(readxl)
pokemon<-load("/Users/kimberly/df_pokemon (1).rdata")
pie(table(df$egg_group_2), main= "Gráfico Pizza Pokemon", col="hotpink1")

Foi realizado um gráfico de pizza a partir do egg group 2 da base de dado pokemon, o que não foi muito fácil por ser uma base de dados com muitas variáveis, deixando um tanto quanto confuso. Plant, Dragon e Ground lideram, enquanto Bug e Flying são os menores no quesito estudado.

Atividade 3

Histograma

O histograma abaixo demonstra a relação de quantidades de estados brasileiros que se enquadram em determinado PIB (Produto Interno Bruto). É notório que a maioria dos estados obtem um PIB abaixo, quase na linha em que se começa o gráfico e apenas um, ficando como outliner, está acima de todos os outros, detendo do maior PIB do país.

options(scipen = 999)
library(readxl)
BasesEstados <- read_excel("/Users/kimberly/BasesEstados.xlsx")
library(ggplot2)
ggplot(BasesEstados) +
  aes(x = Estado, weight = PIB) +
  geom_bar(fill = "#f781bf") +
  labs(x = "Estado", y = "PIB (Produto Interno Bruto)", title = "Relação PIB por Estado") +
  theme_classic()

Atividade 4

Tabela Cruzada

Passo 1: Importação base de Dados Titanic

library(readxl)
load("/Users/kimberly/Titanic (1).rdata")

Cruzamento dos Dados

# Quali X Quali

Titanic$Sexo<-as.factor(Titanic$Sexo)
Titanic$Sobreviveu<-as.factor(Titanic$Sobreviveu)

# Tabela Cruzada (duas variáveis qualitativas)

tabela1<-table(Titanic$Sexo, Titanic$Sobreviveu)

# Prop
prop.table(table(Titanic$Sexo, Titanic$Sobreviveu),1)*100
##            
##             Não sobreviveu Sobreviveu
##   Feminino        26.80851   73.19149
##   Masculino       78.84393   21.15607

Conclusão

Resulta-se então que, como dito no filme “mulheres e crianças primeiro”, realmente, mais mulheres sobreviveram, contrapondo o número de não sobreviventes masculinos. Basicamente o números de não sobreviventes mulheres (26.80851) é o mesmo de sobreviventes homens (2115607).

Atividade 5

Análise de Pokemons

Carregando base de dados

library(readxl)
load("/Users/kimberly/df_pokemon (1).rdata")

Gráfico com Cruzamento de Dados

boxplot(df$height~df$type_1, col=c('turquoise2','palegoldenrod','turquoise'), main = 'Pokemon tipo 1 por peso', xlab = 'Tipos 1', ylab = 'Peso')

Tabela de Cruzamento de Dados

tabela<-table(df$height, df$type_1)
tabela
##      
##       bug dark dragon electric fairy fighting fire flying ghost grass
##   1     1    0      0        0     1        0    0      0     0     0
##   2     1    0      0        2     2        0    0      0     0     3
##   3    11    0      1        3     2        0    0      0     1     3
##   4     2    2      0        5     1        0    2      0     3     8
##   5     6    5      0        3     0        1    4      1     1     5
##   6     5    2      2        3     3        3    5      0     2     5
##   7     3    1      1        0     0        2    5      0     1     4
##   8     5    1      1        4     2        2    1      0     1     4
##   9     1    2      0        1     0        1    4      0     2     4
##   10    7    2      1        2     1        2    4      0     2     8
##   11    3    3      2        1     1        0    2      0     1     3
##   12    7    2      0        3     0        2    2      0     1     3
##   13    0    0      0        0     1        2    2      0     1     2
##   14    2    2      2        2     1        5    1      0     0     1
##   15    5    2      1        2     1        2    2      2     2     0
##   16    1    2      1        2     0        1    2      0     2     1
##   17    0    0      0        0     0        0    4      0     1     3
##   18    1    1      2        1     0        0    0      0     0     1
##   19    1    0      1        1     0        0    3      0     0     0
##   20    0    0      2        0     0        0    1      0     0     5
##   21    0    0      0        1     0        1    1      0     0     0
##   22    0    0      1        0     0        0    0      0     1     2
##   23    0    0      0        0     0        1    0      0     0     0
##   24    0    0      0        0     0        0    0      0     0     0
##   25    1    0      0        0     0        0    0      0     0     0
##   26    0    0      0        0     0        0    0      0     0     0
##   27    0    0      0        0     0        0    0      0     0     0
##   28    0    0      0        0     0        0    0      0     0     0
##   29    0    0      1        0     0        0    0      0     0     0
##   30    0    0      1        0     1        0    0      0     0     0
##   32    0    0      1        0     0        0    0      0     0     0
##   33    0    0      0        0     0        0    0      0     0     1
##   35    0    0      0        0     0        0    0      0     0     0
##   37    0    0      0        0     0        0    0      0     0     0
##   38    0    0      0        0     0        0    1      0     0     0
##   40    0    0      1        0     0        0    0      0     0     0
##   42    0    0      0        0     0        0    0      0     0     0
##   45    0    0      0        0     0        0    0      0     1     0
##   50    0    0      1        0     0        0    0      0     0     0
##   52    0    0      0        0     0        0    0      0     0     0
##   54    0    0      0        0     0        0    0      0     0     0
##   58    0    1      0        0     0        0    0      0     0     0
##   62    0    0      0        0     0        0    0      0     0     0
##   65    0    0      0        0     0        0    0      0     0     0
##   70    0    0      1        0     0        0    0      0     0     0
##   88    0    0      0        0     0        0    0      0     0     0
##   92    0    0      0        0     0        0    0      0     0     0
##   145   0    0      0        0     0        0    0      0     0     0
##      
##       ground ice normal poison psychic rock steel water
##   1        0   0      0      0       0    0     0     0
##   2        1   0      1      0       2    0     1     0
##   3        1   0     11      0       5    1     2     4
##   4        1   3      7      3       5    3     1    10
##   5        2   1      8      2       2    5     1     8
##   6        1   0     10      2       7    1     4    11
##   7        5   1      3      1       2    1     0     3
##   8        1   2      5      3       1    1     2     7
##   9        0   1      2      2       4    2     1     5
##   10       5   1      7      1       3    5     0     7
##   11       3   4      6      0       1    0     0     6
##   12       0   0     10      2       0    3     1     9
##   13       0   2      1      3       3    4     1     5
##   14       0   2      4      1       1    3     0     2
##   15       3   1      6      0       4    2     0     6
##   16       0   0      2      1       3    1     1     3
##   17       0   1      1      1       1    2     2     4
##   18       0   1      3      2       0    1     0     3
##   19       1   0      1      1       0    1     1     0
##   20       3   1      1      1       1    1     0     3
##   21       0   0      1      0       0    0     2     1
##   22       0   0      1      0       0    0     0     1
##   23       0   0      0      0       0    0     0     1
##   24       1   0      0      0       0    0     0     0
##   25       0   1      0      0       0    1     0     1
##   26       0   1      0      0       0    0     0     0
##   27       0   0      0      1       0    1     0     0
##   28       1   0      0      0       0    0     0     0
##   29       0   0      0      0       0    0     0     0
##   30       0   0      0      0       0    0     0     0
##   32       0   0      1      0       0    0     0     0
##   33       0   0      0      0       0    0     0     0
##   35       1   0      0      1       0    0     0     0
##   37       0   0      1      0       0    0     0     0
##   38       0   0      0      0       0    0     0     0
##   40       0   0      0      0       0    0     0     0
##   42       0   0      0      0       0    0     0     1
##   45       0   0      0      0       0    0     0     1
##   50       0   0      0      0       0    0     0     0
##   52       0   0      0      0       1    0     0     0
##   54       0   0      0      0       0    0     1     0
##   58       0   0      0      0       0    0     0     0
##   62       0   0      0      0       0    0     0     1
##   65       0   0      0      0       0    0     0     1
##   70       0   0      0      0       0    0     0     0
##   88       0   0      0      0       0    1     0     0
##   92       0   0      0      0       0    0     1     0
##   145      0   0      0      0       0    0     0     1

A conclusão é de que pokemóns por peso por tipo 1 do mesmo pelo boxplot que a espécie “dragon” é mais pesada, enquanto as de “water” possui um número maior de outliers.

Atividade 6 e 7

Gerando TABELA da Base de Dados Pokemon:

1.Importando a base de dados pokemon:

library(readxl)
load("/Users/kimberly/df_pokemon (1).rdata")

2.Gerando a Tabela:

tabela<- table(df$speed, df$height)
tabela
##      
##       1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
##   5   0 0 0 0 0 2 0 0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   10  0 0 0 0 1 1 1 0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   15  0 1 2 2 0 2 1 0 0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   20  0 1 4 1 2 0 1 1 1  2  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   22  0 0 0 0 0 0 1 0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   23  0 1 0 0 1 1 0 0 0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   24  0 0 0 0 0 1 0 0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   25  0 0 2 1 0 0 0 2 1  2  0  0  0  0  0  1  1  0  0  0  0  0  0  0  0  0
##   28  0 0 0 0 0 1 0 1 0  1  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0
##   29  0 0 1 0 0 0 0 1 0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   30  0 0 2 1 9 5 1 3 0  3  0  2  1  0  0  1  1  0  0  1  1  0  0  0  0  0
##   31  0 0 0 1 1 0 0 0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   32  0 0 0 1 0 0 1 1 0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   33  0 0 0 0 0 0 0 0 0  0  0  0  2  0  0  0  0  0  0  0  0  0  0  0  0  0
##   34  0 0 1 0 0 0 0 0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   35  0 0 1 5 1 7 2 2 0  3  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0
##   36  0 1 0 0 1 0 0 0 0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   38  0 0 0 2 0 0 0 1 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   39  0 0 0 0 0 0 0 0 1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   40  0 0 2 6 3 3 1 3 1  3  1  5  0  1  0  0  0  0  2  0  0  0  0  1  0  0
##   41  0 0 0 1 0 1 0 0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   42  1 0 1 0 2 0 1 0 0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   43  0 0 1 0 1 2 0 0 0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0
##   44  0 0 0 1 1 0 0 0 0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0
##   45  0 1 2 3 3 1 1 1 2  3  2  0  1  4  3  0  0  0  0  0  0  1  0  0  0  0
##   46  0 0 0 0 0 0 0 0 0  0  0  0  1  1  0  0  0  0  0  0  0  0  0  0  0  0
##   47  0 0 0 0 0 0 0 0 0  0  0  1  0  0  0  0  0  0  0  1  0  0  0  0  0  0
##   48  0 0 1 0 1 1 0 1 0  1  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   49  0 0 0 1 0 0 0 0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   50  0 0 2 5 3 5 4 3 0  1  5  4  0  0  0  0  2  2  1  1  2  0  1  0  0  1
##   51  0 0 0 1 0 0 0 0 0  0  0  1  0  0  0  0  0  0  0  1  0  0  0  0  0  0
##   52  0 1 0 0 0 0 0 0 1  0  0  0  0  0  0  0  1  1  0  0  0  0  0  0  0  0
##   55  0 1 2 1 4 1 1 2 1  5  1  0  1  1  1  2  1  1  0  2  0  0  0  0  0  0
##   56  0 0 1 0 0 0 0 1 0  0  0  0  0  0  1  0  0  0  0  0  0  1  0  0  0  0
##   57  0 0 0 2 0 1 1 0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   58  0 0 0 0 0 0 0 0 1  1  2  0  0  1  0  1  0  0  0  0  1  0  0  0  0  0
##   59  0 0 0 0 0 0 0 0 0  0  1  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0
##   60  0 1 2 4 4 3 3 4 3  5  2  3  1  0  1  0  2  0  0  1  0  2  0  0  1  0
##   61  0 0 0 0 1 0 0 0 0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0
##   62  0 0 1 0 0 0 0 0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   63  0 0 0 0 0 2 0 0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   64  0 0 0 0 1 3 0 0 0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   65  1 0 1 1 2 8 2 3 3  5  1  3  0  2  1  1  0  1  0  0  0  0  0  0  0  0
##   66  0 0 1 2 0 0 0 0 1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   67  0 0 0 0 1 0 0 0 0  1  0  1  0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   68  0 0 2 0 0 0 0 0 0  0  0  0  2  0  1  0  1  0  0  0  0  0  0  0  0  0
##   69  0 0 0 0 0 0 0 1 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   70  0 1 3 1 4 0 0 0 1  3  4  2  1  2  3  3  3  0  0  0  1  0  0  0  0  0
##   71  0 0 1 0 0 0 0 0 1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0
##   72  0 0 1 1 0 1 0 1 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   73  0 0 0 0 0 0 0 0 0  1  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0
##   74  0 0 0 1 0 0 0 0 0  1  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0
##   75  0 1 0 1 0 1 1 0 1  1  1  2  1  1  1  0  0  0  1  0  0  0  0  0  0  0
##   76  0 0 0 0 0 0 0 1 0  0  0  0  1  1  0  0  0  0  0  0  0  0  0  0  0  0
##   77  0 0 0 0 0 0 0 0 0  0  1  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0
##   78  0 0 0 0 0 0 0 0 0  1  0  0  0  0  0  1  0  0  0  0  0  0  1  0  0  0
##   79  0 0 0 0 0 0 0 0 0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0
##   80  0 0 1 1 0 3 0 0 3  1  2  3  4  0  3  2  0  1  1  2  0  1  0  0  1  0
##   81  0 0 0 0 0 0 0 0 1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   82  0 0 0 0 0 0 0 0 0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0
##   83  0 0 0 0 0 0 1 1 0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   84  0 0 0 0 0 0 1 0 1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   85  0 0 1 1 3 2 3 2 0  0  1  1  1  4  4  0  2  1  0  1  0  0  0  0  0  0
##   87  0 0 0 0 0 0 0 0 0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0
##   88  0 0 0 0 0 0 1 0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   89  0 0 0 0 0 0 0 0 0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   90  0 0 0 2 0 3 0 0 3  2  1  1  2  1  1  1  0  1  0  1  0  1  0  0  0  0
##   91  0 0 1 0 2 0 0 0 0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   92  0 0 0 0 0 0 0 0 0  0  0  1  0  0  1  0  0  0  0  0  0  0  0  0  0  0
##   93  0 0 0 0 0 0 0 0 0  0  0  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0
##   95  0 1 1 3 0 1 0 0 1  2  0  1  2  2  1  1  0  2  3  1  0  0  0  0  0  0
##   97  0 0 0 0 0 2 1 0 0  0  0  0  0  1  0  0  0  1  0  0  0  0  0  0  0  0
##   98  0 0 0 0 0 0 0 0 0  1  0  0  1  0  0  0  0  1  0  0  0  0  0  0  0  0
##   99  0 0 0 0 0 0 0 0 0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0
##   100 0 1 2 2 2 1 0 0 0  0  1  3  0  0  1  3  2  1  0  2  1  0  0  0  0  0
##   101 0 1 0 0 0 0 0 0 0  2  1  0  0  0  2  0  0  0  0  0  0  0  0  0  0  0
##   102 0 0 0 0 0 0 0 0 0  0  0  1  0  0  0  0  0  0  1  0  0  0  0  0  0  0
##   103 0 0 0 1 0 0 0 0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   104 0 0 0 0 0 1 0 0 0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0
##   105 0 0 0 0 0 0 0 0 1  0  2  1  1  1  2  1  1  0  0  0  0  0  0  0  0  0
##   106 0 0 0 0 0 0 0 0 0  0  1  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0
##   108 0 0 0 0 0 0 0 1 0  0  0  1  0  1  0  0  0  0  1  1  1  0  0  0  0  0
##   109 0 0 1 0 0 0 0 0 0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   110 0 0 0 0 0 0 0 2 1  0  0  0  1  3  1  0  0  0  0  1  0  0  0  0  0  0
##   111 0 0 0 0 0 0 0 0 0  0  0  0  0  0  2  0  0  0  0  0  0  0  0  0  0  0
##   112 0 0 0 0 0 0 0 0 0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0
##   113 0 0 0 0 0 0 0 0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   114 0 0 0 0 0 0 0 0 1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   115 0 0 1 0 1 0 0 0 1  1  2  1  0  0  0  0  0  0  1  0  0  0  0  0  0  0
##   116 0 0 0 0 0 0 1 0 0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   118 0 0 0 0 0 0 0 1 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   120 0 0 0 0 0 0 1 0 0  0  0  0  0  0  1  0  1  0  0  0  0  0  0  0  0  0
##   122 0 0 0 0 0 0 0 0 0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0
##   123 0 0 0 0 0 0 0 0 0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0
##   125 0 0 0 0 0 0 1 0 0  0  1  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0
##   126 0 0 0 0 0 0 0 0 0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   130 0 0 0 0 0 0 0 1 0  0  0  0  0  0  0  0  0  2  0  1  0  0  0  0  0  0
##   140 0 0 0 0 0 0 0 0 0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   145 0 0 0 0 0 0 0 1 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   150 0 0 0 0 0 0 0 0 0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0
##   160 0 0 0 0 0 0 0 1 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##      
##       27 28 29 30 32 33 35 37 38 40 42 45 50 52 54 58 62 65 70 88 92 145
##   5    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   10   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   15   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   20   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   22   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   23   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   24   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   25   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   28   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   29   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   30   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1   0
##   31   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   32   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   33   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   34   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   35   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   36   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   38   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   39   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   40   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   41   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   42   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   43   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   44   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   45   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   46   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   47   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   48   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   49   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   50   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   51   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   52   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   55   0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   56   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   57   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   58   1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   59   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   60   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   1
##   61   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   62   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   63   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   64   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   65   1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   66   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   67   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   68   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   69   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   70   0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  1  0   0
##   71   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   72   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   73   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   74   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   75   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   76   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   77   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   78   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   79   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   80   0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   81   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  0  0  0   0
##   82   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   83   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   84   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   85   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   87   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   88   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   89   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   90   0  0  1  0  1  0  1  0  1  0  0  2  0  0  1  0  0  0  0  0  0   0
##   91   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   92   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   93   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   95   0  0  0  1  0  0  0  0  0  0  0  0  1  0  0  0  0  0  1  0  0   0
##   97   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   98   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   99   0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0   0
##   100  0  0  0  0  0  0  0  1  0  0  1  0  0  0  0  0  0  0  0  0  0   0
##   101  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   102  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   103  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   104  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   105  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   106  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   108  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   109  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   110  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0   0
##   111  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   112  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   113  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   114  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   115  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   116  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   118  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   120  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   122  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   123  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   125  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   126  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   130  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   140  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   145  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   150  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0
##   160  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   0

3.Gerando o coeficiente de relação entre as váriaveis quali e quantitativas de Pokemon

rho <- cor(df$speed, df$height)
rho
## [1] 0.2249439

4.Diagrama de dispersão entre as variáveis:

par(mfrow=c(1,1))
plot(df$height,df$speedt, col = "palegreen", pch=20, xlab = "velocidade", ylab = "altura", main = "Diagrama de dispersão de Altura por Velocidade")
## Warning: Unknown or uninitialised column: 'speedt'.
abline(lm(df$height~df$speed), col = "seagreen")

5.Conclusão:

Observando o gráfico é possível notar que quanto menor o pokemon, maior sua velocidade, tirando alguns outliers presentes. O gráfico é disperso na linha x, de velocidade apenas, fazendo sua altura variar pouco, enquanto a velocidade varia muito. Há poucos casos de pokemons grandes com boas velocidades sendo um que tem a velocidade marcada no 500 ser maior que 50. O mesmo ocorre com dois outliers presentes após a faixa que marca a velocidade de 700.

6.Gráfico Inédito

ggplot(df) +
 aes(x = speed, y = height) +
 geom_line(size = 1L, colour = "#fcfbfd") +
 labs(title = "Relação velocidade por altura de Pokemon") +
 theme_dark()

6.1.Conclusão do gráfico inédito

Ficou explícito o mesmo que pode ser observado no gráfico anterior, pokemons menores tendem a dispersar e ter maiores velocidade, exceçãp de alguns outliers, sendo um caso de altura máxima no gráfico e velocidade na casa dos 350.