## # A tibble: 251 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2018-10-24 301. 304. 286. 288. 20058300 288.
## 2 2018-10-25 317. 321 301. 315. 20840700 315.
## 3 2018-10-26 308. 340. 307. 331. 27425500 331.
## 4 2018-10-29 337. 347. 326. 335. 14486000 335.
## 5 2018-10-30 328. 338. 322. 330. 9126700 330.
## 6 2018-10-31 333. 342 329. 337. 7624300 337.
## 7 2018-11-01 338. 348. 335. 344. 8000100 344.
## 8 2018-11-02 344. 349. 341. 346. 7808000 346.
## 9 2018-11-05 340. 344. 330. 341. 7831000 341.
## 10 2018-11-06 339. 349. 336. 341. 6762900 341.
## # … with 241 more rows
Hint: Copy and revise the importing part of the code from above.
## # A tibble: 251 x 9
## date open high low close volume adjusted SMA.short SMA.long
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2018-10-24 301. 304. 286. 288. 20058300 288. NA NA
## 2 2018-10-25 317. 321 301. 315. 20840700 315. NA NA
## 3 2018-10-26 308. 340. 307. 331. 27425500 331. NA NA
## 4 2018-10-29 337. 347. 326. 335. 14486000 335. NA NA
## 5 2018-10-30 328. 338. 322. 330. 9126700 330. NA NA
## 6 2018-10-31 333. 342 329. 337. 7624300 337. NA NA
## 7 2018-11-01 338. 348. 335. 344. 8000100 344. NA NA
## 8 2018-11-02 344. 349. 341. 346. 7808000 346. NA NA
## 9 2018-11-05 340. 344. 330. 341. 7831000 341. NA NA
## 10 2018-11-06 339. 349. 336. 341. 6762900 341. NA NA
## # … with 241 more rows
## # A tibble: 753 x 3
## date type price
## <date> <chr> <dbl>
## 1 2018-10-24 close 288.
## 2 2018-10-25 close 315.
## 3 2018-10-26 close 331.
## 4 2018-10-29 close 335.
## 5 2018-10-30 close 330.
## 6 2018-10-31 close 337.
## 7 2018-11-01 close 344.
## 8 2018-11-02 close 346.
## 9 2018-11-05 close 341.
## 10 2018-11-06 close 341.
## # … with 743 more rows
The time lag was 29 days.
## # A tibble: 251 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2018-10-24 2738. 2743. 2652. 2656. 4709310000 2656.
## 2 2018-10-25 2675. 2723. 2668. 2706. 4634770000 2706.
## 3 2018-10-26 2668. 2692. 2628. 2659. 4803150000 2659.
## 4 2018-10-29 2683. 2707. 2604. 2641. 4673700000 2641.
## 5 2018-10-30 2641. 2685. 2635. 2683. 5106380000 2683.
## 6 2018-10-31 2706. 2737. 2706. 2712. 5112420000 2712.
## 7 2018-11-01 2718. 2742. 2709. 2740. 4708420000 2740.
## 8 2018-11-02 2745. 2757. 2700. 2723. 4237930000 2723.
## 9 2018-11-05 2726. 2744. 2718. 2738. 3623320000 2738.
## 10 2018-11-06 2738. 2757. 2737. 2755. 3510860000 2755.
## # … with 241 more rows
## # A tibble: 251 x 9
## date open high low close volume adjusted SMA.short SMA.long
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2018-10-24 2738. 2743. 2652. 2656. 4.71e9 2656. NA NA
## 2 2018-10-25 2675. 2723. 2668. 2706. 4.63e9 2706. NA NA
## 3 2018-10-26 2668. 2692. 2628. 2659. 4.80e9 2659. NA NA
## 4 2018-10-29 2683. 2707. 2604. 2641. 4.67e9 2641. NA NA
## 5 2018-10-30 2641. 2685. 2635. 2683. 5.11e9 2683. NA NA
## 6 2018-10-31 2706. 2737. 2706. 2712. 5.11e9 2712. NA NA
## 7 2018-11-01 2718. 2742. 2709. 2740. 4.71e9 2740. NA NA
## 8 2018-11-02 2745. 2757. 2700. 2723. 4.24e9 2723. NA NA
## 9 2018-11-05 2726. 2744. 2718. 2738. 3.62e9 2738. NA NA
## 10 2018-11-06 2738. 2757. 2737. 2755. 3.51e9 2755. 2701. NA
## # … with 241 more rows
## # A tibble: 753 x 3
## date type price
## <date> <chr> <dbl>
## 1 2018-10-24 close 2656.
## 2 2018-10-25 close 2706.
## 3 2018-10-26 close 2659.
## 4 2018-10-29 close 2641.
## 5 2018-10-30 close 2683.
## 6 2018-10-31 close 2712.
## 7 2018-11-01 close 2740.
## 8 2018-11-02 close 2723.
## 9 2018-11-05 close 2738.
## 10 2018-11-06 close 2755.
## # … with 743 more rows
Hint: Use message
, echo
and results
in the chunk options. Refer to the RMarkdown Reference Guide.