library(readxl)
hensei2012 <- read_excel("191023_Hensei2012.xlsx", sheet = 1)
setwd("/Users/koyo/Dropbox/000078_CSKAKEN/01_CSNC")
hensei2013 <- read_excel("sho_csnc.xlsx", sheet = 1)
setwd("/Users/koyo/Dropbox/000078_CSKAKEN/191023_CS_SES")
colnames(hensei2012) <- c("shu", "city", "schl", "schlname", "n.g1",
"v01", "v02", "nc.g1", "csmean.g1")
hensei2012 <- subset(hensei2012, v01 != "対象外")
hensei2012 <- subset(hensei2012, v01 != "複式")
hensei2012 <- hensei2012[c("schlname", "nc.g1", "csmean.g1")]
hensei2012$nc.g1 <- as.numeric(hensei2012$nc.g1)
hensei2012$csmean.g1 <- as.numeric(hensei2012$csmean.g1)
hensei2013 <- hensei2013[,-c(9:10)]
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
csnc.6y <- full_join(hensei2013, hensei2012, by = "schlname")
csnc.6y <- csnc.6y[,c(1:8, 19:20, 9:18)]
setwd("/Users/koyo/Dropbox/191004_SES_Trial/000_Gakku_SES")
ses <- read.csv("Gakku_SES.csv", fileEncoding = "Shift_JIS", stringsAsFactors=FALSE)
setwd("/Users/koyo/Dropbox/000078_CSKAKEN/191023_CS_SES")
ses <- ses[c(5:13)]
colnames(ses) <- c("schlname", "setai.n", "nenshu.m", "nenshu.sd",
"sotsu.n", "tan.n", "dai.n", "tan.p", "dai.p")
csnc.ses <- full_join(csnc.6y, ses, by = "schlname")
write.csv(csnc.ses, "csnc.ses.csv", fileEncoding = "Shift_JIS")
setwd("/Users/koyo/Dropbox/000078_CSKAKEN/04_NRT/SY2018")
nrt.all <- read.csv("nrt.csv", fileEncoding = "Shift_JIS")
setwd("/Users/koyo/Dropbox/000078_CSKAKEN/191023_CS_SES")
nrt.koku <- nrt.all %>%
dplyr::select(c("renban", "sho.sid",
"koku.ss.1213", #1-2年生追加
"koku.ss.1314",
"koku.ss.1415",
"koku.ss.1516",
"koku.ss.1617",
"koku.ss.1718" #6-7年生追加
))
colnames(nrt.koku) <- c("renban", "sid",
"g12.koku",
"g23.koku",
"g34.koku",
"g45.koku",
"g56.koku",
"g67.koku"
)
nrt.koku <- na.omit(nrt.koku)
nrt.koku <- nrt.koku %>%
mutate(id = row_number())
nrt.shak <- nrt.all %>%
dplyr::select(c("renban", "sho.sid",
"shak.ss.1415",
"shak.ss.1516",
"shak.ss.1617",
"shak.ss.1718" #6-7年生追加
))
colnames(nrt.shak) <- c("renban", "sid",
"g34.shak",
"g45.shak",
"g56.shak",
"g67.shak"
)
nrt.shak <- na.omit(nrt.shak)
nrt.shak <- nrt.shak %>%
mutate(id = row_number())
nrt.koku.schl <- data.frame(unique(nrt.koku$sid)); colnames(nrt.koku.schl) <- c("sid.new")
nrt.shak.schl <- data.frame(unique(nrt.shak$sid)); colnames(nrt.shak.schl) <- c("sid.new")
csnc.ses.taisho <- dplyr::filter(csnc.ses, taisho.g1 == 1 &
togo == 0 & nonrt == 0 & fuku == 0)
csnc.ses.taisho <- na.omit(csnc.ses.taisho)
library(dplyr)
# 国語対象校
koku.csnc.ses_ <- inner_join(nrt.koku.schl, csnc.ses.taisho, by = "sid.new")
## 必要な列だけを取り出して列名を付け替える
koku.csnc.ses <- koku.csnc.ses_[,c(1, 9:28)]
colnames(koku.csnc.ses) <- c("sid", "nc.g1", "cs.g1", "nc.g2", "cs.g2",
"nc.g3", "cs.g3", "nc.g4", "cs.g4", "nc.g5",
"cs.g5", "nc.g6", "cs.g6",
"setai.n", "nenshu.m", "nenshu.sd", "sotsu.n",
"tan.n", "dai.n", "tan.p", "dai.p")
# 社会対象校
shak.csnc.ses_ <- inner_join(nrt.shak.schl, csnc.ses.taisho, by = "sid.new")
## 必要な列だけを取り出して列名を付け替える
shak.csnc.ses <- shak.csnc.ses_[,c(1, 9:28)]
colnames(shak.csnc.ses) <- c("sid", "nc.g1", "cs.g1", "nc.g2", "cs.g2",
"nc.g3", "cs.g3", "nc.g4", "cs.g4", "nc.g5",
"cs.g5", "nc.g6", "cs.g6",
"setai.n", "nenshu.m", "nenshu.sd", "sotsu.n",
"tan.n", "dai.n", "tan.p", "dai.p")
# 国語
## クラスサイズを中心化する
### 各学年での平均
koku.csnc.ses <- dplyr::mutate(koku.csnc.ses,
csm = (cs.g1 + cs.g2 + cs.g3 + cs.g4 + cs.g5 + cs.g6)/6)
### 中心化
koku.csm <- mean(koku.csnc.ses$csm)
koku.csnc.ses$cs.c.g1 <- koku.csnc.ses$cs.g1 - mean(koku.csm)
koku.csnc.ses$cs.c.g2 <- koku.csnc.ses$cs.g2 - mean(koku.csm)
koku.csnc.ses$cs.c.g3 <- koku.csnc.ses$cs.g3 - mean(koku.csm)
koku.csnc.ses$cs.c.g4 <- koku.csnc.ses$cs.g4 - mean(koku.csm)
koku.csnc.ses$cs.c.g5 <- koku.csnc.ses$cs.g5 - mean(koku.csm)
koku.csnc.ses$cs.c.g6 <- koku.csnc.ses$cs.g6 - mean(koku.csm)
## 世帯年収を中心化する
koku.nenshu.mean <- mean(koku.csnc.ses$nenshu.m)
koku.csnc.ses$nenshu.c <- koku.csnc.ses$nenshu.m - koku.nenshu.mean
# 短大高専卒業率を中心化する
koku.tan.p.mean <- mean(koku.csnc.ses$tan.p)
koku.csnc.ses$tan.c <- koku.csnc.ses$tan.p - koku.tan.p.mean
# 大学大学院卒業率を中心化する
koku.dai.p.mean <- mean(koku.csnc.ses$dai.p)
koku.csnc.ses$dai.c <- koku.csnc.ses$dai.p - koku.dai.p.mean
### おまけ:クラスサイズ変動差分データ列作成
koku.csnc.ses$cs.d12 <- koku.csnc.ses$cs.g2 - koku.csnc.ses$cs.g1
koku.csnc.ses$cs.d23 <- koku.csnc.ses$cs.g3 - koku.csnc.ses$cs.g2
koku.csnc.ses$cs.d34 <- koku.csnc.ses$cs.g4 - koku.csnc.ses$cs.g3
koku.csnc.ses$cs.d45 <- koku.csnc.ses$cs.g5 - koku.csnc.ses$cs.g4
koku.csnc.ses$cs.d56 <- koku.csnc.ses$cs.g6 - koku.csnc.ses$cs.g5
# 社会
## クラスサイズを中心化する
### 各学年での平均
shak.csnc.ses <- dplyr::mutate(shak.csnc.ses,
csm = (cs.g1 + cs.g2 + cs.g3 + cs.g4 + cs.g5 + cs.g6)/6)
### 中心化
shak.csm <- mean(shak.csnc.ses$csm)
shak.csnc.ses$cs.c.g1 <- shak.csnc.ses$cs.g1 - mean(shak.csm)
shak.csnc.ses$cs.c.g2 <- shak.csnc.ses$cs.g2 - mean(shak.csm)
shak.csnc.ses$cs.c.g3 <- shak.csnc.ses$cs.g3 - mean(shak.csm)
shak.csnc.ses$cs.c.g4 <- shak.csnc.ses$cs.g4 - mean(shak.csm)
shak.csnc.ses$cs.c.g5 <- shak.csnc.ses$cs.g5 - mean(shak.csm)
shak.csnc.ses$cs.c.g6 <- shak.csnc.ses$cs.g6 - mean(shak.csm)
## 世帯年収を中心化する
shak.nenshu.mean <- mean(shak.csnc.ses$nenshu.m)
shak.csnc.ses$nenshu.c <- shak.csnc.ses$nenshu.m - shak.nenshu.mean
# 短大高専卒業率を中心化する
shak.tan.p.mean <- mean(shak.csnc.ses$tan.p)
shak.csnc.ses$tan.c <- shak.csnc.ses$tan.p - shak.tan.p.mean
# 大学大学院卒業率を中心化する
shak.dai.p.mean <- mean(shak.csnc.ses$dai.p)
shak.csnc.ses$dai.c <- shak.csnc.ses$dai.p - shak.dai.p.mean
### おまけ:クラスサイズ変動差分データ列作成
shak.csnc.ses$cs.d34 <- shak.csnc.ses$cs.g4 - shak.csnc.ses$cs.g3
shak.csnc.ses$cs.d45 <- shak.csnc.ses$cs.g5 - shak.csnc.ses$cs.g4
shak.csnc.ses$cs.d56 <- shak.csnc.ses$cs.g6 - shak.csnc.ses$cs.g5
# 1-2年生
koku.nrt.12_ <- nrt.koku[c("id", "sid", "g12.koku")]
koku.nrt.12_$year <- 0
koku.csnc.1 <- koku.csnc.ses[c("sid", "nc.g1", "cs.g1", "cs.c.g1", "nenshu.c", "tan.c", "dai.c")]
koku.csnc.1$cs.d01 <- 0 # ここは1年生時用の特殊処理
koku.nrt.12 <- dplyr::inner_join(koku.csnc.1, koku.nrt.12_, by = "sid")
koku.nrt.12 <- koku.nrt.12[c( "id", "sid", "nc.g1" , "cs.g1", "cs.c.g1", "cs.d01", "nenshu.c", "tan.c", "dai.c", "g12.koku", "year")]
colnames(koku.nrt.12) <- c("id", "sid", "nc", "cs", "cs.c", "cs.d", "nenshu.c", "tan.c", "dai.c", "koku", "year")
#2-3年生
koku.nrt.23_ <- nrt.koku[c("id", "sid", "g23.koku")]
koku.nrt.23_$year <- 1
koku.csnc.2 <- koku.csnc.ses[c("sid", "nc.g2", "cs.g2", "cs.c.g2", "cs.d12", "nenshu.c", "tan.c", "dai.c")]
koku.nrt.23 <- dplyr::inner_join(koku.csnc.2, koku.nrt.23_, by = "sid")
koku.nrt.23 <- koku.nrt.23[c( "id", "sid", "nc.g2" , "cs.g2", "cs.c.g2", "cs.d12", "nenshu.c", "tan.c", "dai.c", "g23.koku", "year")]
colnames(koku.nrt.23) <- c("id", "sid", "nc", "cs", "cs.c", "cs.d", "nenshu.c", "tan.c", "dai.c", "koku", "year")
#3-4年生
koku.nrt.34_ <- nrt.koku[c("id", "sid", "g34.koku")]
koku.nrt.34_$year <- 2
koku.csnc.3 <- koku.csnc.ses[c("sid", "nc.g3", "cs.g3", "cs.c.g3", "cs.d23", "nenshu.c", "tan.c", "dai.c")]
koku.nrt.34 <- dplyr::inner_join(koku.csnc.3, koku.nrt.34_, by = "sid")
koku.nrt.34 <- koku.nrt.34[c( "id", "sid", "nc.g3" , "cs.g3", "cs.c.g3", "cs.d23", "nenshu.c", "tan.c", "dai.c", "g34.koku", "year")]
colnames(koku.nrt.34) <- c("id", "sid", "nc", "cs", "cs.c", "cs.d", "nenshu.c", "tan.c", "dai.c", "koku", "year")
#4-5年生
koku.nrt.45_ <- nrt.koku[c("id", "sid", "g45.koku")]
koku.nrt.45_$year <- 3
koku.csnc.4 <- koku.csnc.ses[c("sid", "nc.g4", "cs.g4", "cs.c.g4", "cs.d34", "nenshu.c", "tan.c", "dai.c")]
koku.nrt.45 <- dplyr::inner_join(koku.csnc.4, koku.nrt.45_, by = "sid")
koku.nrt.45 <- koku.nrt.45[c( "id", "sid", "nc.g4" , "cs.g4", "cs.c.g4", "cs.d34", "nenshu.c", "tan.c", "dai.c", "g45.koku", "year")]
colnames(koku.nrt.45) <- c("id", "sid", "nc", "cs", "cs.c", "cs.d", "nenshu.c", "tan.c", "dai.c", "koku", "year")
#5-6年生
koku.nrt.56_ <- nrt.koku[c("id", "sid", "g56.koku")]
koku.nrt.56_$year <- 4
koku.csnc.5 <- koku.csnc.ses[c("sid", "nc.g5", "cs.g5", "cs.c.g5", "cs.d45", "nenshu.c", "tan.c", "dai.c")]
koku.nrt.56 <- dplyr::inner_join(koku.csnc.5, koku.nrt.56_, by = "sid")
koku.nrt.56 <- koku.nrt.56[c( "id", "sid", "nc.g5" , "cs.g5", "cs.c.g5", "cs.d45", "nenshu.c", "tan.c", "dai.c", "g56.koku", "year")]
colnames(koku.nrt.56) <- c("id", "sid", "nc", "cs", "cs.c", "cs.d", "nenshu.c", "tan.c", "dai.c", "koku", "year")
#6-7年生
koku.nrt.67_ <- nrt.koku[c("id", "sid", "g67.koku")]
koku.nrt.67_$year <- 5
koku.csnc.6 <- koku.csnc.ses[c("sid", "nc.g6", "cs.g6", "cs.c.g6", "cs.d56", "nenshu.c", "tan.c", "dai.c")]
koku.nrt.67 <- dplyr::inner_join(koku.csnc.6, koku.nrt.67_, by = "sid")
koku.nrt.67 <- koku.nrt.67[c( "id", "sid", "nc.g6" , "cs.g6", "cs.c.g6", "cs.d56", "nenshu.c", "tan.c", "dai.c", "g67.koku", "year")]
colnames(koku.nrt.67) <- c("id", "sid", "nc", "cs", "cs.c", "cs.d", "nenshu.c", "tan.c", "dai.c", "koku", "year")
# うぃーんがっしゃん
koku.nrt.lt <- dplyr::bind_rows(koku.nrt.12, koku.nrt.23, koku.nrt.34, koku.nrt.45, koku.nrt.56, koku.nrt.67)
#3-4年生
shak.nrt.34_ <- nrt.shak[c("id", "sid", "g34.shak")]
shak.nrt.34_$year <- 0
shak.csnc.3 <- shak.csnc.ses[c("sid", "nc.g3", "cs.g3", "cs.c.g3", "nenshu.c", "tan.c", "dai.c")]
shak.csnc.3$cs.d23 <- 0 # ここは3年生時用の特殊処理
shak.nrt.34 <- dplyr::inner_join(shak.csnc.3, shak.nrt.34_, by = "sid")
shak.nrt.34 <- shak.nrt.34[c( "id", "sid", "nc.g3" , "cs.g3", "cs.c.g3", "cs.d23", "nenshu.c", "tan.c", "dai.c", "g34.shak", "year")]
colnames(shak.nrt.34) <- c("id", "sid", "nc", "cs", "cs.c", "cs.d", "nenshu.c", "tan.c", "dai.c", "shak", "year")
#4-5年生
shak.nrt.45_ <- nrt.shak[c("id", "sid", "g45.shak")]
shak.nrt.45_$year <- 1
shak.csnc.4 <- shak.csnc.ses[c("sid", "nc.g4", "cs.g4", "cs.c.g4", "cs.d34", "nenshu.c", "tan.c", "dai.c")]
shak.nrt.45 <- dplyr::inner_join(shak.csnc.4, shak.nrt.45_, by = "sid")
shak.nrt.45 <- shak.nrt.45[c( "id", "sid", "nc.g4" , "cs.g4", "cs.c.g4", "cs.d34", "nenshu.c", "tan.c", "dai.c", "g45.shak", "year")]
colnames(shak.nrt.45) <- c("id", "sid", "nc", "cs", "cs.c", "cs.d", "nenshu.c", "tan.c", "dai.c", "shak", "year")
#5-6年生
shak.nrt.56_ <- nrt.shak[c("id", "sid", "g56.shak")]
shak.nrt.56_$year <- 2
shak.csnc.5 <- shak.csnc.ses[c("sid", "nc.g5", "cs.g5", "cs.c.g5", "cs.d45", "nenshu.c", "tan.c", "dai.c")]
shak.nrt.56 <- dplyr::inner_join(shak.csnc.5, shak.nrt.56_, by = "sid")
shak.nrt.56 <- shak.nrt.56[c( "id", "sid", "nc.g5" , "cs.g5", "cs.c.g5", "cs.d45", "nenshu.c", "tan.c", "dai.c", "g56.shak", "year")]
colnames(shak.nrt.56) <- c("id", "sid", "nc", "cs", "cs.c", "cs.d", "nenshu.c", "tan.c", "dai.c", "shak", "year")
#6-7年生
shak.nrt.67_ <- nrt.shak[c("id", "sid", "g67.shak")]
shak.nrt.67_$year <- 3
shak.csnc.6 <- shak.csnc.ses[c("sid", "nc.g6", "cs.g6", "cs.c.g6", "cs.d56", "nenshu.c", "tan.c", "dai.c")]
shak.nrt.67 <- dplyr::inner_join(shak.csnc.6, shak.nrt.67_, by = "sid")
shak.nrt.67 <- shak.nrt.67[c( "id", "sid", "nc.g6" , "cs.g6", "cs.c.g6", "cs.d56", "nenshu.c", "tan.c", "dai.c", "g67.shak", "year")]
colnames(shak.nrt.67) <- c("id", "sid", "nc", "cs", "cs.c", "cs.d", "nenshu.c", "tan.c", "dai.c", "shak", "year")
# うぃーんがっしゃん
shak.nrt.lt <- dplyr::bind_rows(shak.nrt.34, shak.nrt.45, shak.nrt.56, shak.nrt.67)
par(oma = c(0, 0, 4, 0))
par(mfrow=c(2,3))
hist(koku.csnc.ses$cs.g1, xlim = c(0, 40), ylim = c(0,50))
hist(koku.csnc.ses$cs.g2, xlim = c(0, 40), ylim = c(0,50))
hist(koku.csnc.ses$cs.g3, xlim = c(0, 40), ylim = c(0,50))
hist(koku.csnc.ses$cs.g4, xlim = c(0, 40), ylim = c(0,50))
hist(koku.csnc.ses$cs.g5, xlim = c(0, 40), ylim = c(0,50))
hist(koku.csnc.ses$cs.g6, xlim = c(0, 40), ylim = c(0,50))
mtext(side = 3, line=1, outer=T, text = "Histgram of Class Size (Kokugo)", cex=1.5)
par(oma = c(0, 0, 4, 0))
par(mfrow=c(2,2))
hist(shak.csnc.ses$cs.g3, xlim = c(0, 40), ylim = c(0,20))
hist(shak.csnc.ses$cs.g4, xlim = c(0, 40), ylim = c(0,20))
hist(shak.csnc.ses$cs.g5, xlim = c(0, 40), ylim = c(0,20))
hist(shak.csnc.ses$cs.g6, xlim = c(0, 40), ylim = c(0,20))
mtext(side = 3, line=1, outer=T, text = "Histgram of Class Size (Shakai)", cex=1.5)
par(oma = c(0, 0, 4, 0))
par(mfrow=c(1,3))
hist(koku.csnc.ses$nenshu.m, xlim = c(300, 600), ylim = c(0,50), main = "Annual income")
hist(koku.csnc.ses$tan.p, xlim = c(0, 0.5), ylim = c(0,50), main = "Graduation rate (2-year higher edu.)")
hist(koku.csnc.ses$dai.p, xlim = c(0, 0.5), ylim = c(0,50), main = "Graduation rate (tertiary edu.)")
mtext(side = 3, line=1, outer=T, text = "Histgram of SES Alternative Indicators School Mean (Kokugo)", cex=1.5)
par(oma = c(0, 0, 4, 0))
par(mfrow=c(1,3))
hist(shak.csnc.ses$nenshu.m, xlim = c(300, 600), ylim = c(0,20), main = "Annual income")
hist(shak.csnc.ses$tan.p, xlim = c(0, 0.5), ylim = c(0,20), main = "Graduation rate (2-year higher edu.)")
hist(shak.csnc.ses$dai.p, xlim = c(0, 0.5), ylim = c(0,20), main = "Graduation rate (tertiary edu.)")
mtext(side = 3, line=1, outer=T, text = "Histgram of SES Alternative Indicators School Mean (Shakai)", cex=1.5)
library(lmerTest)
## Loading required package: lme4
## Loading required package: Matrix
##
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
##
## lmer
## The following object is masked from 'package:stats':
##
## step
# クラスサイズだけ投入
koku.res1 <- lmer(koku ~ year + cs.c + year:cs.c + (1|id) + (1|sid),
data = koku.nrt.lt,
REML = FALSE
)
# 初期値にだけ年収が影響
koku.res2 <- lmer(koku ~ year + nenshu.c + cs.c + year:cs.c + (1|id) + (1|sid),
data = koku.nrt.lt,
REML = FALSE
)
# 初期値と推移に年収が影響
koku.res3 <- lmer(koku ~ year + nenshu.c + cs.c + year:nenshu.c + year:cs.c +(1|id) + (1|sid),
data = koku.nrt.lt,
REML = FALSE
)
# 初期値に年収とクラスサイズの交互作用が影響
koku.res4 <- lmer(koku ~ year + nenshu.c + cs.c +
nenshu.c:cs.c +
year:nenshu.c +
year:cs.c +
(1|id) + (1|sid),
data = koku.nrt.lt,
REML = FALSE
)
# 初期値と推移に年収とクラスサイズの交互作用が影響
koku.res5 <- lmer(koku ~ year + nenshu.c + cs.c +
nenshu.c:cs.c +
year:nenshu.c +
year:cs.c +
year:cs.c:nenshu.c +
(1|id) + (1|sid),
data = koku.nrt.lt,
REML = FALSE
)
# 初期値にだけ大卒率が影響
koku.res6 <- lmer(koku ~ year + dai.c + cs.c + year:cs.c + (1|id) + (1|sid),
data = koku.nrt.lt,
REML = FALSE
)
# 初期値と推移に大卒率が影響
koku.res7 <- lmer(koku ~ year + dai.c + cs.c + year:dai.c + year:cs.c +(1|id) + (1|sid),
data = koku.nrt.lt,
REML = FALSE
)
# 初期値に大卒率とクラスサイズの交互作用が影響
koku.res8 <- lmer(koku ~ year + dai.c + cs.c +
dai.c:cs.c +
year:dai.c +
year:cs.c +
(1|id) + (1|sid),
data = koku.nrt.lt,
REML = FALSE
)
# 初期値と推移に大卒率とクラスサイズの交互作用が影響
koku.res9 <- lmer(koku ~ year + dai.c + cs.c +
dai.c:cs.c +
year:dai.c +
year:cs.c +
year:cs.c:dai.c +
(1|id) + (1|sid),
data = koku.nrt.lt,
REML = FALSE
)
# 推移に大卒率とクラスサイズの交互作用が影響
koku.res10 <- lmer(koku ~ year + dai.c + cs.c +
year:dai.c +
year:cs.c +
year:cs.c:dai.c +
(1|id) + (1|sid),
data = koku.nrt.lt,
REML = FALSE
)
print(koku.res1, digits = 3)
## Linear mixed model fit by maximum likelihood ['lmerModLmerTest']
## Formula: koku ~ year + cs.c + year:cs.c + (1 | id) + (1 | sid)
## Data: koku.nrt.lt
## AIC BIC logLik deviance df.resid
## 159427.4 159484.3 -79706.7 159413.4 25091
## Random effects:
## Groups Name Std.Dev.
## id (Intercept) 7.67
## sid (Intercept) 1.49
## Residual 4.54
## Number of obs: 25098, groups: id, 4183; sid, 118
## Fixed Effects:
## (Intercept) year cs.c year:cs.c
## 53.6936 -0.2150 -0.0162 -0.0109
print(koku.res2, digits = 3)
## Linear mixed model fit by maximum likelihood ['lmerModLmerTest']
## Formula: koku ~ year + nenshu.c + cs.c + year:cs.c + (1 | id) + (1 | sid)
## Data: koku.nrt.lt
## AIC BIC logLik deviance df.resid
## 159427.8 159492.9 -79705.9 159411.8 25090
## Random effects:
## Groups Name Std.Dev.
## id (Intercept) 7.67
## sid (Intercept) 1.46
## Residual 4.54
## Number of obs: 25098, groups: id, 4183; sid, 118
## Fixed Effects:
## (Intercept) year nenshu.c cs.c year:cs.c
## 53.6585 -0.2148 -0.0104 -0.0177 -0.0109
print(koku.res3, digits = 3)
## Linear mixed model fit by maximum likelihood ['lmerModLmerTest']
## Formula: koku ~ year + nenshu.c + cs.c + year:nenshu.c + year:cs.c + (1 |
## id) + (1 | sid)
## Data: koku.nrt.lt
## AIC BIC logLik deviance df.resid
## 159421.95 159495.13 -79701.98 159403.95 25089
## Random effects:
## Groups Name Std.Dev.
## id (Intercept) 7.67
## sid (Intercept) 1.46
## Residual 4.54
## Number of obs: 25098, groups: id, 4183; sid, 118
## Fixed Effects:
## (Intercept) year nenshu.c cs.c year:nenshu.c
## 53.68585 -0.22498 -0.00518 -0.01356 -0.00210
## year:cs.c
## -0.01285
print(koku.res4, digits = 3)
## Linear mixed model fit by maximum likelihood ['lmerModLmerTest']
## Formula: koku ~ year + nenshu.c + cs.c + nenshu.c:cs.c + year:nenshu.c +
## year:cs.c + (1 | id) + (1 | sid)
## Data: koku.nrt.lt
## AIC BIC logLik deviance df.resid
## 159415.78 159497.09 -79697.89 159395.78 25088
## Random effects:
## Groups Name Std.Dev.
## id (Intercept) 7.67
## sid (Intercept) 1.46
## Residual 4.54
## Number of obs: 25098, groups: id, 4183; sid, 118
## Fixed Effects:
## (Intercept) year nenshu.c cs.c nenshu.c:cs.c
## 53.71352 -0.22676 -0.00750 0.00397 0.00172
## year:nenshu.c year:cs.c
## -0.00231 -0.01270
print(koku.res5, digits = 3)
## Linear mixed model fit by maximum likelihood ['lmerModLmerTest']
## Formula: koku ~ year + nenshu.c + cs.c + nenshu.c:cs.c + year:nenshu.c +
## year:cs.c + year:cs.c:nenshu.c + (1 | id) + (1 | sid)
## Data: koku.nrt.lt
## AIC BIC logLik deviance df.resid
## 159416.94 159506.37 -79697.47 159394.94 25087
## Random effects:
## Groups Name Std.Dev.
## id (Intercept) 7.67
## sid (Intercept) 1.46
## Residual 4.54
## Number of obs: 25098, groups: id, 4183; sid, 118
## Fixed Effects:
## (Intercept) year nenshu.c
## 53.723305 -0.231102 -0.008458
## cs.c nenshu.c:cs.c year:nenshu.c
## 0.002769 0.002056 -0.001879
## year:cs.c year:nenshu.c:cs.c
## -0.012402 -0.000147
print(koku.res6, digits = 3)
## Linear mixed model fit by maximum likelihood ['lmerModLmerTest']
## Formula: koku ~ year + dai.c + cs.c + year:cs.c + (1 | id) + (1 | sid)
## Data: koku.nrt.lt
## AIC BIC logLik deviance df.resid
## 159429.33 159494.38 -79706.67 159413.33 25090
## Random effects:
## Groups Name Std.Dev.
## id (Intercept) 7.67
## sid (Intercept) 1.49
## Residual 4.54
## Number of obs: 25098, groups: id, 4183; sid, 118
## Fixed Effects:
## (Intercept) year dai.c cs.c year:cs.c
## 53.6848 -0.2149 1.4750 -0.0167 -0.0109
print(koku.res7, digits = 3)
## Linear mixed model fit by maximum likelihood ['lmerModLmerTest']
## Formula: koku ~ year + dai.c + cs.c + year:dai.c + year:cs.c + (1 | id) +
## (1 | sid)
## Data: koku.nrt.lt
## AIC BIC logLik deviance df.resid
## 159416.6 159489.8 -79699.3 159398.6 25089
## Random effects:
## Groups Name Std.Dev.
## id (Intercept) 7.67
## sid (Intercept) 1.49
## Residual 4.54
## Number of obs: 25098, groups: id, 4183; sid, 118
## Fixed Effects:
## (Intercept) year dai.c cs.c year:dai.c
## 53.72877 -0.23108 -3.75357 -0.00583 2.13671
## year:cs.c
## -0.01577
print(koku.res8, digits = 3)
## Linear mixed model fit by maximum likelihood ['lmerModLmerTest']
## Formula:
## koku ~ year + dai.c + cs.c + dai.c:cs.c + year:dai.c + year:cs.c +
## (1 | id) + (1 | sid)
## Data: koku.nrt.lt
## AIC BIC logLik deviance df.resid
## 159412.59 159493.90 -79696.29 159392.59 25088
## Random effects:
## Groups Name Std.Dev.
## id (Intercept) 7.67
## sid (Intercept) 1.50
## Residual 4.54
## Number of obs: 25098, groups: id, 4183; sid, 118
## Fixed Effects:
## (Intercept) year dai.c cs.c dai.c:cs.c
## 53.77255 -0.23311 -3.04494 0.00515 -0.79625
## year:dai.c year:cs.c
## 2.43970 -0.01625
print(koku.res9, digits = 3)
## Linear mixed model fit by maximum likelihood ['lmerModLmerTest']
## Formula:
## koku ~ year + dai.c + cs.c + dai.c:cs.c + year:dai.c + year:cs.c +
## year:cs.c:dai.c + (1 | id) + (1 | sid)
## Data: koku.nrt.lt
## AIC BIC logLik deviance df.resid
## 159411.4 159500.8 -79694.7 159389.4 25087
## Random effects:
## Groups Name Std.Dev.
## id (Intercept) 7.67
## sid (Intercept) 1.50
## Residual 4.54
## Number of obs: 25098, groups: id, 4183; sid, 118
## Fixed Effects:
## (Intercept) year dai.c cs.c
## 53.80209 -0.24486 -1.62631 0.00503
## dai.c:cs.c year:dai.c year:cs.c year:dai.c:cs.c
## -1.31385 1.78689 -0.01599 0.19891
print(koku.res10, digits = 3)
## Linear mixed model fit by maximum likelihood ['lmerModLmerTest']
## Formula:
## koku ~ year + dai.c + cs.c + year:dai.c + year:cs.c + year:cs.c:dai.c +
## (1 | id) + (1 | sid)
## Data: koku.nrt.lt
## AIC BIC logLik deviance df.resid
## 159418.50 159499.81 -79699.25 159398.50 25088
## Random effects:
## Groups Name Std.Dev.
## id (Intercept) 7.67
## sid (Intercept) 1.49
## Residual 4.54
## Number of obs: 25098, groups: id, 4183; sid, 118
## Fixed Effects:
## (Intercept) year dai.c cs.c
## 53.72860 -0.22977 -3.87207 -0.00493
## year:dai.c year:cs.c year:dai.c:cs.c
## 2.24319 -0.01584 -0.02492
koku.fit <- matrix(c(AIC(koku.res1), AIC(koku.res2), AIC(koku.res3),
AIC(koku.res4), AIC(koku.res5), AIC(koku.res6),
AIC(koku.res7), AIC(koku.res8), AIC(koku.res9),
AIC(koku.res10),
BIC(koku.res1), BIC(koku.res2), BIC(koku.res3),
BIC(koku.res4), BIC(koku.res5), BIC(koku.res6),
BIC(koku.res7), BIC(koku.res8), BIC(koku.res9),
BIC(koku.res10)),
nrow = 10, ncol = 2)
koku.fit
## [,1] [,2]
## [1,] 159427.4 159484.3
## [2,] 159427.8 159492.9
## [3,] 159422.0 159495.1
## [4,] 159415.8 159497.1
## [5,] 159416.9 159506.4
## [6,] 159429.3 159494.4
## [7,] 159416.6 159489.8
## [8,] 159412.6 159493.9
## [9,] 159411.4 159500.8
## [10,] 159418.5 159499.8
# クラスサイズだけ投入
shak.res1 <- lmer(shak ~ year + cs.c + year:cs.c + (1|id) + (1|sid),
data = shak.nrt.lt,
REML = FALSE
)
# 初期値にだけ年収が影響
shak.res2 <- lmer(shak ~ year + nenshu.c + cs.c + year:cs.c + (1|id) + (1|sid),
data = shak.nrt.lt,
REML = FALSE
)
# 初期値と推移に年収が影響
shak.res3 <- lmer(shak ~ year + nenshu.c + cs.c + year:nenshu.c + year:cs.c +(1|id) + (1|sid),
data = shak.nrt.lt,
REML = FALSE
)
# 初期値に年収とクラスサイズの交互作用が影響
shak.res4 <- lmer(shak ~ year + nenshu.c + cs.c +
nenshu.c:cs.c +
year:nenshu.c +
year:cs.c +
(1|id) + (1|sid),
data = shak.nrt.lt,
REML = FALSE
)
# 初期値と推移に年収とクラスサイズの交互作用が影響
shak.res5 <- lmer(shak ~ year + nenshu.c + cs.c +
nenshu.c:cs.c +
year:nenshu.c +
year:cs.c +
year:cs.c:nenshu.c +
(1|id) + (1|sid),
data = shak.nrt.lt,
REML = FALSE
)
# 初期値にだけ大卒率が影響
shak.res6 <- lmer(shak ~ year + dai.c + cs.c + year:cs.c + (1|id) + (1|sid),
data = shak.nrt.lt,
REML = FALSE
)
# 初期値と推移に大卒率が影響
shak.res7 <- lmer(shak ~ year + dai.c + cs.c + year:dai.c + year:cs.c +(1|id) + (1|sid),
data = shak.nrt.lt,
REML = FALSE
)
# 初期値に大卒率とクラスサイズの交互作用が影響
shak.res8 <- lmer(shak ~ year + dai.c + cs.c +
dai.c:cs.c +
year:dai.c +
year:cs.c +
(1|id) + (1|sid),
data = shak.nrt.lt,
REML = FALSE
)
# 初期値と推移に大卒率とクラスサイズの交互作用が影響
shak.res9 <- lmer(shak ~ year + dai.c + cs.c +
dai.c:cs.c +
year:dai.c +
year:cs.c +
year:cs.c:dai.c +
(1|id) + (1|sid),
data = shak.nrt.lt,
REML = FALSE
)
# 推移に大卒率とクラスサイズの交互作用が影響
shak.res10 <- lmer(shak ~ year + dai.c + cs.c +
year:dai.c +
year:cs.c +
year:cs.c:dai.c +
(1|id) + (1|sid),
data = shak.nrt.lt,
REML = FALSE
)
print(shak.res1, digits = 3)
## Linear mixed model fit by maximum likelihood ['lmerModLmerTest']
## Formula: shak ~ year + cs.c + year:cs.c + (1 | id) + (1 | sid)
## Data: shak.nrt.lt
## AIC BIC logLik deviance df.resid
## 45235.93 45283.51 -22610.96 45221.93 6609
## Random effects:
## Groups Name Std.Dev.
## id (Intercept) 9.00
## sid (Intercept) 1.57
## Residual 5.39
## Number of obs: 6616, groups: id, 1654; sid, 48
## Fixed Effects:
## (Intercept) year cs.c year:cs.c
## 52.3548 0.1004 0.0224 -0.0225
print(shak.res2, digits = 3)
## Linear mixed model fit by maximum likelihood ['lmerModLmerTest']
## Formula: shak ~ year + nenshu.c + cs.c + year:cs.c + (1 | id) + (1 | sid)
## Data: shak.nrt.lt
## AIC BIC logLik deviance df.resid
## 45237.84 45292.22 -22610.92 45221.84 6608
## Random effects:
## Groups Name Std.Dev.
## id (Intercept) 9.00
## sid (Intercept) 1.57
## Residual 5.39
## Number of obs: 6616, groups: id, 1654; sid, 48
## Fixed Effects:
## (Intercept) year nenshu.c cs.c year:cs.c
## 52.36846 0.10067 0.00575 0.02423 -0.02246
print(shak.res3, digits = 3)
## Linear mixed model fit by maximum likelihood ['lmerModLmerTest']
## Formula: shak ~ year + nenshu.c + cs.c + year:nenshu.c + year:cs.c + (1 |
## id) + (1 | sid)
## Data: shak.nrt.lt
## AIC BIC logLik deviance df.resid
## 45239.57 45300.74 -22610.78 45221.57 6607
## Random effects:
## Groups Name Std.Dev.
## id (Intercept) 9.00
## sid (Intercept) 1.57
## Residual 5.39
## Number of obs: 6616, groups: id, 1654; sid, 48
## Fixed Effects:
## (Intercept) year nenshu.c cs.c year:nenshu.c
## 52.36274 0.10470 0.00285 0.02052 0.00196
## year:cs.c
## -0.01973
print(shak.res4, digits = 3)
## Linear mixed model fit by maximum likelihood ['lmerModLmerTest']
## Formula: shak ~ year + nenshu.c + cs.c + nenshu.c:cs.c + year:nenshu.c +
## year:cs.c + (1 | id) + (1 | sid)
## Data: shak.nrt.lt
## AIC BIC logLik deviance df.resid
## 45238.06 45306.03 -22609.03 45218.06 6606
## Random effects:
## Groups Name Std.Dev.
## id (Intercept) 9.00
## sid (Intercept) 1.75
## Residual 5.38
## Number of obs: 6616, groups: id, 1654; sid, 48
## Fixed Effects:
## (Intercept) year nenshu.c cs.c nenshu.c:cs.c
## 52.180026 0.101648 -0.000291 -0.011045 -0.004713
## year:nenshu.c year:cs.c
## 0.001500 -0.019294
print(shak.res5, digits = 3)
## Linear mixed model fit by maximum likelihood ['lmerModLmerTest']
## Formula: shak ~ year + nenshu.c + cs.c + nenshu.c:cs.c + year:nenshu.c +
## year:cs.c + year:cs.c:nenshu.c + (1 | id) + (1 | sid)
## Data: shak.nrt.lt
## AIC BIC logLik deviance df.resid
## 45218.63 45293.40 -22598.32 45196.63 6605
## Random effects:
## Groups Name Std.Dev.
## id (Intercept) 9.00
## sid (Intercept) 1.71
## Residual 5.37
## Number of obs: 6616, groups: id, 1654; sid, 48
## Fixed Effects:
## (Intercept) year nenshu.c
## 52.02298 0.22272 0.00658
## cs.c nenshu.c:cs.c year:nenshu.c
## -0.01806 -0.00877 -0.00242
## year:cs.c year:nenshu.c:cs.c
## -0.01265 0.00313
print(shak.res6, digits = 3)
## Linear mixed model fit by maximum likelihood ['lmerModLmerTest']
## Formula: shak ~ year + dai.c + cs.c + year:cs.c + (1 | id) + (1 | sid)
## Data: shak.nrt.lt
## AIC BIC logLik deviance df.resid
## 45237.91 45292.28 -22610.95 45221.91 6608
## Random effects:
## Groups Name Std.Dev.
## id (Intercept) 9.00
## sid (Intercept) 1.56
## Residual 5.39
## Number of obs: 6616, groups: id, 1654; sid, 48
## Fixed Effects:
## (Intercept) year dai.c cs.c year:cs.c
## 52.3452 0.1002 1.7616 0.0213 -0.0226
print(shak.res7, digits = 3)
## Linear mixed model fit by maximum likelihood ['lmerModLmerTest']
## Formula: shak ~ year + dai.c + cs.c + year:dai.c + year:cs.c + (1 | id) +
## (1 | sid)
## Data: shak.nrt.lt
## AIC BIC logLik deviance df.resid
## 45233.15 45294.33 -22607.58 45215.15 6607
## Random effects:
## Groups Name Std.Dev.
## id (Intercept) 9.00
## sid (Intercept) 1.53
## Residual 5.38
## Number of obs: 6616, groups: id, 1654; sid, 48
## Fixed Effects:
## (Intercept) year dai.c cs.c year:dai.c
## 52.4035 0.0642 -6.3661 0.0339 6.0588
## year:cs.c
## -0.0368
print(shak.res8, digits = 3)
## Linear mixed model fit by maximum likelihood ['lmerModLmerTest']
## Formula:
## shak ~ year + dai.c + cs.c + dai.c:cs.c + year:dai.c + year:cs.c +
## (1 | id) + (1 | sid)
## Data: shak.nrt.lt
## AIC BIC logLik deviance df.resid
## 45235.15 45303.13 -22607.58 45215.15 6606
## Random effects:
## Groups Name Std.Dev.
## id (Intercept) 9.00
## sid (Intercept) 1.53
## Residual 5.38
## Number of obs: 6616, groups: id, 1654; sid, 48
## Fixed Effects:
## (Intercept) year dai.c cs.c dai.c:cs.c
## 52.40379 0.06425 -6.34899 0.03391 -0.00532
## year:dai.c year:cs.c
## 6.05733 -0.03678
print(shak.res9, digits = 3)
## Linear mixed model fit by maximum likelihood ['lmerModLmerTest']
## Formula:
## shak ~ year + dai.c + cs.c + dai.c:cs.c + year:dai.c + year:cs.c +
## year:cs.c:dai.c + (1 | id) + (1 | sid)
## Data: shak.nrt.lt
## AIC BIC logLik deviance df.resid
## 45234.91 45309.68 -22606.45 45212.91 6605
## Random effects:
## Groups Name Std.Dev.
## id (Intercept) 9.00
## sid (Intercept) 1.53
## Residual 5.38
## Number of obs: 6616, groups: id, 1654; sid, 48
## Fixed Effects:
## (Intercept) year dai.c cs.c
## 52.3256 0.1052 -11.7356 0.0430
## dai.c:cs.c year:dai.c year:cs.c year:dai.c:cs.c
## 1.2280 8.9309 -0.0411 -0.6757
shak.fit <- matrix(c(AIC(shak.res1), AIC(shak.res2), AIC(shak.res3),
AIC(shak.res4), AIC(shak.res5), AIC(shak.res6),
AIC(shak.res7), AIC(shak.res8), AIC(shak.res9),
AIC(shak.res10),
BIC(shak.res1), BIC(shak.res2), BIC(shak.res3),
BIC(shak.res4), BIC(shak.res5), BIC(shak.res6),
BIC(shak.res7), BIC(shak.res8), BIC(shak.res9),
BIC(shak.res10)),
nrow = 10, ncol = 2)
shak.fit
## [,1] [,2]
## [1,] 45235.93 45283.51
## [2,] 45237.84 45292.22
## [3,] 45239.57 45300.74
## [4,] 45238.06 45306.03
## [5,] 45218.63 45293.40
## [6,] 45237.91 45292.28
## [7,] 45233.15 45294.33
## [8,] 45235.15 45303.13
## [9,] 45234.91 45309.68
## [10,] 45233.52 45301.49
summary(koku.res9, digits = 3)
## Warning in summary.merMod(as(object, "lmerMod"), ...): additional arguments
## ignored
## Linear mixed model fit by maximum likelihood . t-tests use
## Satterthwaite's method [lmerModLmerTest]
## Formula:
## koku ~ year + dai.c + cs.c + dai.c:cs.c + year:dai.c + year:cs.c +
## year:cs.c:dai.c + (1 | id) + (1 | sid)
## Data: koku.nrt.lt
##
## AIC BIC logLik deviance df.resid
## 159411.4 159500.8 -79694.7 159389.4 25087
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -5.3294 -0.5509 0.0419 0.5959 5.0165
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 58.848 7.671
## sid (Intercept) 2.257 1.502
## Residual 20.622 4.541
## Number of obs: 25098, groups: id, 4183; sid, 118
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 5.380e+01 2.062e-01 1.269e+02 260.892 < 2e-16 ***
## year -2.449e-01 2.079e-02 2.099e+04 -11.779 < 2e-16 ***
## dai.c -1.626e+00 6.324e+00 1.019e+02 -0.257 0.79757
## cs.c 5.035e-03 1.576e-02 9.685e+03 0.319 0.74937
## dai.c:cs.c -1.314e+00 4.353e-01 1.688e+04 -3.018 0.00255 **
## year:dai.c 1.787e+00 6.771e-01 2.102e+04 2.639 0.00832 **
## year:cs.c -1.599e-02 3.482e-03 2.098e+04 -4.591 4.44e-06 ***
## year:dai.c:cs.c 1.989e-01 1.114e-01 2.099e+04 1.785 0.07422 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) year dai.c cs.c d.c:c. yr:d.c yr:cs.
## year -0.247
## dai.c -0.167 0.014
## cs.c -0.069 0.120 -0.130
## dai.c:cs.c -0.117 0.241 -0.119 -0.208
## year:dai.c 0.018 -0.002 -0.236 0.201 0.223
## year:cs.c 0.076 -0.354 0.076 -0.546 0.014 -0.332
## yr:d.c:cs.c 0.080 -0.317 0.126 -0.004 -0.666 -0.540 0.043
summary(shak.res7, digits = 3)
## Warning in summary.merMod(as(object, "lmerMod"), ...): additional arguments
## ignored
## Linear mixed model fit by maximum likelihood . t-tests use
## Satterthwaite's method [lmerModLmerTest]
## Formula: shak ~ year + dai.c + cs.c + year:dai.c + year:cs.c + (1 | id) +
## (1 | sid)
## Data: shak.nrt.lt
##
## AIC BIC logLik deviance df.resid
## 45233.2 45294.3 -22607.6 45215.2 6607
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -6.0469 -0.4938 0.0574 0.5393 4.8163
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 81.073 9.004
## sid (Intercept) 2.343 1.531
## Residual 28.988 5.384
## Number of obs: 6616, groups: id, 1654; sid, 48
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 52.40348 0.36589 44.71912 143.220 < 2e-16 ***
## year 0.06424 0.06972 4980.98736 0.922 0.35683
## dai.c -6.36614 12.69402 31.80601 -0.502 0.61947
## cs.c 0.03390 0.03455 1559.39170 0.981 0.32661
## year:dai.c 6.05880 2.32973 4980.77741 2.601 0.00933 **
## year:cs.c -0.03678 0.01298 4991.94461 -2.833 0.00463 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) year dai.c cs.c yr:d.c
## year -0.300
## dai.c -0.190 0.038
## cs.c -0.179 0.273 -0.220
## year:dai.c 0.063 -0.198 -0.251 0.147
## year:cs.c 0.100 -0.351 0.086 -0.464 -0.421
library(psych)
# クラスサイズ
# 分析対象校の1-6学年までの平均クラスサイズ平均とSD
koku.cs.desc <- describe(koku.csnc.ses$csm)
koku.cs.desc
## vars n mean sd median trimmed mad min max range skew kurtosis
## X1 1 118 22.92 6.77 24.39 23.42 6.69 6.83 32.83 26 -0.59 -0.7
## se
## X1 0.62
shak.cs.desc <- describe(shak.csnc.ses$csm)
shak.cs.desc
## vars n mean sd median trimmed mad min max range skew kurtosis
## X1 1 48 22.06 5.98 23.25 22.32 6.86 9 32.33 23.33 -0.4 -0.94
## se
## X1 0.86
# 大卒率
koku.dai.desc <- describe(koku.csnc.ses$dai.p)
koku.dai.desc
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 118 0.08 0.03 0.07 0.07 0.03 0.03 0.17 0.14 0.91 0.36 0
shak.dai.desc <- describe(shak.csnc.ses$dai.p)
shak.dai.desc
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 48 0.07 0.03 0.07 0.07 0.03 0.03 0.16 0.13 1.03 1.15 0
# 国語
koku.gra.tab <- data.frame(
matrix(c(koku.cs.desc$mean - koku.cs.desc$sd, koku.cs.desc$mean, koku.cs.desc$mean + koku.cs.desc$sd,
koku.dai.desc$mean - koku.dai.desc$sd, koku.dai.desc$mean, koku.dai.desc$mean + koku.dai.desc$sd,
-1* koku.cs.desc$sd, 0, koku.cs.desc$sd,
-1* koku.dai.desc$sd, 0, koku.dai.desc$sd),
nrow = 3, ncol = 4)
)
colnames(koku.gra.tab) <- c("cs", "dai", "cs.c", "dai.c")
rownames(koku.gra.tab) <- c("-1SD", "M", "+1SD")
# 社会
shak.gra.tab <- data.frame(
matrix(c(shak.cs.desc$mean - shak.cs.desc$sd, shak.cs.desc$mean, shak.cs.desc$mean + shak.cs.desc$sd,
shak.dai.desc$mean - shak.dai.desc$sd, shak.dai.desc$mean, shak.dai.desc$mean + shak.dai.desc$sd,
-1* shak.cs.desc$sd, 0, shak.cs.desc$sd,
-1* shak.dai.desc$sd, 0, shak.dai.desc$sd),
nrow = 3, ncol = 4)
)
colnames(shak.gra.tab) <- c("cs", "dai", "cs.c", "dai.c")
rownames(shak.gra.tab) <- c("-1SD", "M", "+1SD")
# 国語はモデル9(初期値と推移に大卒率とクラスサイズの交互作用が影響)
## koku.res9 <- lmer(koku ~ year + dai.c + cs.c +
## dai.c:cs.c +
## year:dai.c +
## year:cs.c +
## year:cs.c:dai.c
# 係数
koku.keisu <- data.frame(
matrix(c(koku.res9@pp$delb[1],
koku.res9@pp$delb[2],
koku.res9@pp$delb[3],
koku.res9@pp$delb[4],
koku.res9@pp$delb[5],
koku.res9@pp$delb[6],
koku.res9@pp$delb[7],
koku.res9@pp$delb[8]),
nrow = 1, ncol = 8))
colnames(koku.keisu) <- c("Intercept", "year",
"dai.c", "cs.c", "dai.c:cs.c",
"year:dai.c", "year:cs.c", "year:dai.c:cs.c")
# 大卒率高 クラスサイズ小
## t0, cs = small
year <- 0; dai <- koku.gra.tab[3,4]; cs <- koku.gra.tab[1,3]
daih.css.t0 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t1, cs = small
year <- 1; dai <- koku.gra.tab[3,4]; cs <- koku.gra.tab[1,3]
daih.css.t1 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t2, cs = small
year <- 2; dai <- koku.gra.tab[3,4]; cs <- koku.gra.tab[1,3]
daih.css.t2 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t3, cs = small
year <- 3; dai <- koku.gra.tab[3,4]; cs <- koku.gra.tab[1,3]
daih.css.t3 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t4, cs = small
year <- 4; dai <- koku.gra.tab[3,4]; cs <- koku.gra.tab[1,3]
daih.css.t4 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t5, cs = small
year <- 5; dai <- koku.gra.tab[3,4]; cs <- koku.gra.tab[1,3]
daih.css.t5 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
# 大卒率高 クラスサイズ中
## t0, cs = medium
year <- 0; dai <- koku.gra.tab[3,4]; cs <- koku.gra.tab[2,3]
daih.csm.t0 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t1, cs = medium
year <- 1; dai <- koku.gra.tab[3,4]; cs <- koku.gra.tab[2,3]
daih.csm.t1 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t2, cs = medium
year <- 2; dai <- koku.gra.tab[3,4]; cs <- koku.gra.tab[2,3]
daih.csm.t2 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t3, cs = medium
year <- 3; dai <- koku.gra.tab[3,4]; cs <- koku.gra.tab[2,3]
daih.csm.t3 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t4, cs = medium
year <- 4; dai <- koku.gra.tab[3,4]; cs <- koku.gra.tab[2,3]
daih.csm.t4 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t5, cs = medium
year <- 5; dai <- koku.gra.tab[3,4]; cs <- koku.gra.tab[2,3]
daih.csm.t5 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
# 大卒率高 クラスサイズ大
## t0, cs = large
year <- 0; dai <- koku.gra.tab[3,4]; cs <- koku.gra.tab[3,3]
daih.csl.t0 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t1, cs = large
year <- 1; dai <- koku.gra.tab[3,4]; cs <- koku.gra.tab[3,3]
daih.csl.t1 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t2, cs = large
year <- 2; dai <- koku.gra.tab[3,4]; cs <- koku.gra.tab[3,3]
daih.csl.t2 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t3, cs = large
year <- 3; dai <- koku.gra.tab[3,4]; cs <- koku.gra.tab[3,3]
daih.csl.t3 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t4, cs = large
year <- 4; dai <- koku.gra.tab[3,4]; cs <- koku.gra.tab[3,3]
daih.csl.t4 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t5, cs = large
year <- 5; dai <- koku.gra.tab[3,4]; cs <- koku.gra.tab[3,3]
daih.csl.t5 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
# 大卒率中 クラスサイズ小
## t0, cs = small
year <- 0; dai <- koku.gra.tab[2,4]; cs <- koku.gra.tab[1,3]
daim.css.t0 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t1, cs = small
year <- 1; dai <- koku.gra.tab[2,4]; cs <- koku.gra.tab[1,3]
daim.css.t1 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t2, cs = small
year <- 2; dai <- koku.gra.tab[2,4]; cs <- koku.gra.tab[1,3]
daim.css.t2 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t3, cs = small
year <- 3; dai <- koku.gra.tab[2,4]; cs <- koku.gra.tab[1,3]
daim.css.t3 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t4, cs = small
year <- 4; dai <- koku.gra.tab[2,4]; cs <- koku.gra.tab[1,3]
daim.css.t4 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t5, cs = small
year <- 5; dai <- koku.gra.tab[2,4]; cs <- koku.gra.tab[1,3]
daim.css.t5 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
# 大卒率中 クラスサイズ中
## t0, cs = medium
year <- 0; dai <- koku.gra.tab[2,4]; cs <- koku.gra.tab[2,3]
daim.csm.t0 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t1, cs = medium
year <- 1; dai <- koku.gra.tab[2,4]; cs <- koku.gra.tab[2,3]
daim.csm.t1 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t2, cs = medium
year <- 2; dai <- koku.gra.tab[2,4]; cs <- koku.gra.tab[2,3]
daim.csm.t2 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t3, cs = medium
year <- 3; dai <- koku.gra.tab[2,4]; cs <- koku.gra.tab[2,3]
daim.csm.t3 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t4, cs = medium
year <- 4; dai <- koku.gra.tab[2,4]; cs <- koku.gra.tab[2,3]
daim.csm.t4 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t5, cs = medium
year <- 5; dai <- koku.gra.tab[2,4]; cs <- koku.gra.tab[2,3]
daim.csm.t5 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
# 大卒率中 クラスサイズ大
## t0, cs = large
year <- 0; dai <- koku.gra.tab[2,4]; cs <- koku.gra.tab[3,3]
daim.csl.t0 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t1, cs = large
year <- 1; dai <- koku.gra.tab[2,4]; cs <- koku.gra.tab[3,3]
daim.csl.t1 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t2, cs = large
year <- 2; dai <- koku.gra.tab[2,4]; cs <- koku.gra.tab[3,3]
daim.csl.t2 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t3, cs = large
year <- 3; dai <- koku.gra.tab[2,4]; cs <- koku.gra.tab[3,3]
daim.csl.t3 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t4, cs = large
year <- 4; dai <- koku.gra.tab[2,4]; cs <- koku.gra.tab[3,3]
daim.csl.t4 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t5, cs = large
year <- 5; dai <- koku.gra.tab[2,4]; cs <- koku.gra.tab[3,3]
daim.csl.t5 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
# 大卒率低 クラスサイズ小
## t0, cs = small
year <- 0; dai <- koku.gra.tab[1,4]; cs <- koku.gra.tab[1,3]
dail.css.t0 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t1, cs = small
year <- 1; dai <- koku.gra.tab[1,4]; cs <- koku.gra.tab[1,3]
dail.css.t1 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t2, cs = small
year <- 2; dai <- koku.gra.tab[1,4]; cs <- koku.gra.tab[1,3]
dail.css.t2 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t3, cs = small
year <- 3; dai <- koku.gra.tab[1,4]; cs <- koku.gra.tab[1,3]
dail.css.t3 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t4, cs = small
year <- 4; dai <- koku.gra.tab[1,4]; cs <- koku.gra.tab[1,3]
dail.css.t4 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t5, cs = small
year <- 5; dai <- koku.gra.tab[1,4]; cs <- koku.gra.tab[1,3]
dail.css.t5 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
# 大卒率低 クラスサイズ中
## t0, cs = medium
year <- 0; dai <- koku.gra.tab[1,4]; cs <- koku.gra.tab[2,3]
dail.csm.t0 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t1, cs = medium
year <- 1; dai <- koku.gra.tab[1,4]; cs <- koku.gra.tab[2,3]
dail.csm.t1 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t2, cs = medium
year <- 2; dai <- koku.gra.tab[1,4]; cs <- koku.gra.tab[2,3]
dail.csm.t2 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t3, cs = medium
year <- 3; dai <- koku.gra.tab[1,4]; cs <- koku.gra.tab[2,3]
dail.csm.t3 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t4, cs = medium
year <- 4; dai <- koku.gra.tab[1,4]; cs <- koku.gra.tab[2,3]
dail.csm.t4 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t5, cs = medium
year <- 5; dai <- koku.gra.tab[1,4]; cs <- koku.gra.tab[2,3]
dail.csm.t5 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
# 大卒率低 クラスサイズ大
## t0, cs = large
year <- 0; dai <- koku.gra.tab[1,4]; cs <- koku.gra.tab[3,3]
dail.csl.t0 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t1, cs = large
year <- 1; dai <- koku.gra.tab[1,4]; cs <- koku.gra.tab[3,3]
dail.csl.t1 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t2, cs = large
year <- 2; dai <- koku.gra.tab[1,4]; cs <- koku.gra.tab[3,3]
dail.csl.t2 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t3, cs = large
year <- 3; dai <- koku.gra.tab[1,4]; cs <- koku.gra.tab[3,3]
dail.csl.t3 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t4, cs = large
year <- 4; dai <- koku.gra.tab[1,4]; cs <- koku.gra.tab[3,3]
dail.csl.t4 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## t5, cs = large
year <- 5; dai <- koku.gra.tab[1,4]; cs <- koku.gra.tab[3,3]
dail.csl.t5 <- koku.keisu[,1] +
koku.keisu[,2] * year +
koku.keisu[,3] * dai +
koku.keisu[,4] * cs +
koku.keisu[,5] * (dai * cs) +
koku.keisu[,6] * (year * dai) +
koku.keisu[,7] * (year * cs) +
koku.keisu[,8] * (year * dai * cs)
## plotdata.koku
plotdata.koku <- matrix(
c(dail.css.t0, dail.css.t1, dail.css.t2, dail.css.t3, dail.css.t4, dail.css.t5,
dail.csm.t0, dail.csm.t1, dail.csm.t2, dail.csm.t3, dail.csm.t4, dail.csm.t5,
dail.csl.t0, dail.csl.t1, dail.csl.t2, dail.csl.t3, dail.csl.t4, dail.csl.t5,
daim.css.t0, daim.css.t1, daim.css.t2, daim.css.t3, daim.css.t4, daim.css.t5,
daim.csm.t0, daim.csm.t1, daim.csm.t2, daim.csm.t3, daim.csm.t4, daim.csm.t5,
daim.csl.t0, daim.csl.t1, daim.csl.t2, daim.csl.t3, daim.csl.t4, daim.csl.t5,
daih.css.t0, daih.css.t1, daih.css.t2, daih.css.t3, daih.css.t4, daih.css.t5,
daih.csm.t0, daih.csm.t1, daih.csm.t2, daih.csm.t3, daih.csm.t4, daih.csm.t5,
daih.csl.t0, daih.csl.t1, daih.csl.t2, daih.csl.t3, daih.csl.t4, daih.csl.t5),
nrow = 6, ncol =9)
rownames(plotdata.koku) <- c("Grade.1", "Grade 2", "Grade 3", "Grade 4", "Grade 5", "Grade 6")
colnames(plotdata.koku) <- c("Grad.Lo.CS.S", "Grad.Lo.CS.M", "Grad.Lo.CS.L",
"Grad.Md.CS.S", "Grad.Md.CS.M", "Grad.Md.CS.L",
"Grad.Hi.CS.S", "Grad.Hi.CS.M", "Grad.Hi.CS.L")
## 社会はモデル7(初期値と推移に大卒率が影響)
## shak.res7 <- lmer(shak ~ year +
# dai.c +
# cs.c +
# year:dai.c +
# year:cs.c +
# (1|id) + (1|sid),
# 係数
shak.keisu <- data.frame(
matrix(c(shak.res7@pp$delb[1],
shak.res7@pp$delb[2],
shak.res7@pp$delb[3],
shak.res7@pp$delb[4],
shak.res7@pp$delb[5],
shak.res7@pp$delb[6]),
nrow = 1, ncol = 6))
colnames(shak.keisu) <- c("Intercept", "year",
"dai.c", "cs.c",
"year:dai.c", "year:cs.c")
# 大卒率高 クラスサイズ小
## t0, cs = small
year <- 0; dai <- shak.gra.tab[3,4]; cs <- shak.gra.tab[1,3]
daih.css.t0 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
## t1, cs = small
year <- 1; dai <- shak.gra.tab[3,4]; cs <- shak.gra.tab[1,3]
daih.css.t1 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
## t2, cs = small
year <- 2; dai <- shak.gra.tab[3,4]; cs <- shak.gra.tab[1,3]
daih.css.t2 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
## t3, cs = small
year <- 3; dai <- shak.gra.tab[3,4]; cs <- shak.gra.tab[1,3]
daih.css.t3 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
# 大卒率高 クラスサイズ中
## t0, cs = medium
year <- 0; dai <- shak.gra.tab[3,4]; cs <- shak.gra.tab[2,3]
daih.csm.t0 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
## t1, cs = medium
year <- 1; dai <- shak.gra.tab[3,4]; cs <- shak.gra.tab[2,3]
daih.csm.t1 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
## t2, cs = medium
year <- 2; dai <- shak.gra.tab[3,4]; cs <- shak.gra.tab[2,3]
daih.csm.t2 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
## t3, cs = medium
year <- 3; dai <- shak.gra.tab[3,4]; cs <- shak.gra.tab[2,3]
daih.csm.t3 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
# 大卒率高 クラスサイズ大
## t0, cs = large
year <- 0; dai <- shak.gra.tab[3,4]; cs <- shak.gra.tab[3,3]
daih.csl.t0 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
## t1, cs = large
year <- 1; dai <- shak.gra.tab[3,4]; cs <- shak.gra.tab[3,3]
daih.csl.t1 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
## t2, cs = large
year <- 2; dai <- shak.gra.tab[3,4]; cs <- shak.gra.tab[3,3]
daih.csl.t2 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
## t3, cs = large
year <- 3; dai <- shak.gra.tab[3,4]; cs <- shak.gra.tab[3,3]
daih.csl.t3 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
# 大卒率中 クラスサイズ小
## t0, cs = small
year <- 0; dai <- shak.gra.tab[2,4]; cs <- shak.gra.tab[1,3]
daim.css.t0 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
## t1, cs = small
year <- 1; dai <- shak.gra.tab[2,4]; cs <- shak.gra.tab[1,3]
daim.css.t1 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
## t2, cs = small
year <- 2; dai <- shak.gra.tab[2,4]; cs <- shak.gra.tab[1,3]
daim.css.t2 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
## t3, cs = small
year <- 3; dai <- shak.gra.tab[2,4]; cs <- shak.gra.tab[1,3]
daim.css.t3 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
# 大卒率中 クラスサイズ中
## t0, cs = medium
year <- 0; dai <- shak.gra.tab[2,4]; cs <- shak.gra.tab[2,3]
daim.csm.t0 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
## t1, cs = medium
year <- 1; dai <- shak.gra.tab[2,4]; cs <- shak.gra.tab[2,3]
daim.csm.t1 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
## t2, cs = medium
year <- 2; dai <- shak.gra.tab[2,4]; cs <- shak.gra.tab[2,3]
daim.csm.t2 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
## t3, cs = medium
year <- 3; dai <- shak.gra.tab[2,4]; cs <- shak.gra.tab[2,3]
daim.csm.t3 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
# 大卒率中 クラスサイズ大
## t0, cs = large
year <- 0; dai <- shak.gra.tab[2,4]; cs <- shak.gra.tab[3,3]
daim.csl.t0 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
## t1, cs = large
year <- 1; dai <- shak.gra.tab[2,4]; cs <- shak.gra.tab[3,3]
daim.csl.t1 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
## t2, cs = large
year <- 2; dai <- shak.gra.tab[2,4]; cs <- shak.gra.tab[3,3]
daim.csl.t2 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
## t3, cs = large
year <- 3; dai <- shak.gra.tab[2,4]; cs <- shak.gra.tab[3,3]
daim.csl.t3 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
# 大卒率低 クラスサイズ小
## t0, cs = small
year <- 0; dai <- shak.gra.tab[1,4]; cs <- shak.gra.tab[1,3]
dail.css.t0 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
## t1, cs = small
year <- 1; dai <- shak.gra.tab[1,4]; cs <- shak.gra.tab[1,3]
dail.css.t1 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
## t2, cs = small
year <- 2; dai <- shak.gra.tab[1,4]; cs <- shak.gra.tab[1,3]
dail.css.t2 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
## t3, cs = small
year <- 3; dai <- shak.gra.tab[1,4]; cs <- shak.gra.tab[1,3]
dail.css.t3 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
## t4, cs = small
year <- 4; dai <- shak.gra.tab[1,4]; cs <- shak.gra.tab[1,3]
dail.css.t4 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
## t5, cs = small
year <- 5; dai <- shak.gra.tab[1,4]; cs <- shak.gra.tab[1,3]
dail.css.t5 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
# 大卒率低 クラスサイズ中
## t0, cs = medium
year <- 0; dai <- shak.gra.tab[1,4]; cs <- shak.gra.tab[2,3]
dail.csm.t0 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
## t1, cs = medium
year <- 1; dai <- shak.gra.tab[1,4]; cs <- shak.gra.tab[2,3]
dail.csm.t1 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
## t2, cs = medium
year <- 2; dai <- shak.gra.tab[1,4]; cs <- shak.gra.tab[2,3]
dail.csm.t2 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
## t3, cs = medium
year <- 3; dai <- shak.gra.tab[1,4]; cs <- shak.gra.tab[2,3]
dail.csm.t3 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
# 大卒率低 クラスサイズ大
## t0, cs = large
year <- 0; dai <- shak.gra.tab[1,4]; cs <- shak.gra.tab[3,3]
dail.csl.t0 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
## t1, cs = large
year <- 1; dai <- shak.gra.tab[1,4]; cs <- shak.gra.tab[3,3]
dail.csl.t1 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
## t2, cs = large
year <- 2; dai <- shak.gra.tab[1,4]; cs <- shak.gra.tab[3,3]
dail.csl.t2 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
## t3, cs = large
year <- 3; dai <- shak.gra.tab[1,4]; cs <- shak.gra.tab[3,3]
dail.csl.t3 <- shak.keisu[,1] +
shak.keisu[,2] * year +
shak.keisu[,3] * dai +
shak.keisu[,4] * cs +
shak.keisu[,5] * (year * dai) +
shak.keisu[,6] * (year * cs)
## plotdata.shak
plotdata.shak <- matrix(
c(dail.css.t0, dail.css.t1, dail.css.t2, dail.css.t3,
dail.csm.t0, dail.csm.t1, dail.csm.t2, dail.csm.t3,
dail.csl.t0, dail.csl.t1, dail.csl.t2, dail.csl.t3,
daim.css.t0, daim.css.t1, daim.css.t2, daim.css.t3,
daim.csm.t0, daim.csm.t1, daim.csm.t2, daim.csm.t3,
daim.csl.t0, daim.csl.t1, daim.csl.t2, daim.csl.t3,
daih.css.t0, daih.css.t1, daih.css.t2, daih.css.t3,
daih.csm.t0, daih.csm.t1, daih.csm.t2, daih.csm.t3,
daih.csl.t0, daih.csl.t1, daih.csl.t2, daih.csl.t3),
nrow = 4, ncol =9)
rownames(plotdata.shak) <- c("Grade 3", "Grade 4", "Grade 5", "Grade 6")
colnames(plotdata.shak) <- c("Grad.Lo.CS.S", "Grad.Lo.CS.M", "Grad.Lo.CS.L",
"Grad.Md.CS.S", "Grad.Md.CS.M", "Grad.Md.CS.L",
"Grad.Hi.CS.S", "Grad.Hi.CS.M", "Grad.Hi.CS.L")
col <- c("1年", "2年", "3年", "4年", "5年", "6年")
#大卒率 低
mar = c(4,4,4,4) # 余白を小さく
# oma = c(0,0,0,0) # デバイス領域(インチで幅と高さ)
par(family = "HiraKakuProN-W3") #Macintoshの場合
matplot(plotdata.koku[,1:3], type="b", xlim=c(1, 6), ylim = c(50, 55), axes=F,
xlab="学年", ylab="学力偏差値(国語)",
main="大学・大学院卒業者数の割合が平均(0.08)より1SD(0.03)低い学区の学校の場合",
mgp = c(2, 0.7, 0),
lwd=1, #やや太く
lty = c(2, 1, 4), #線種は以下の通り
## lty="solid" or 1→実線
## lty="dashed" or 2→ダッシュ
## lty="dotted" or 3→ドット
## lty="dotdash" or 4→ドットとダッシュ
## lty="longdash" or 5→長いダッシュ
## lty="twodash" or 6→二つのダッシュ
col = c(1, 1, 1), #色は以下の通り
## 順に黒,赤,緑,青,水色,紫,黄,灰
pch = c(15, 16, 17),
cex = 1, # 記号の大きさ(標準は1)
cex.lab = 1.0, # 軸の説明の字の大きさ
cex.axis = 1.0, # 軸の数字等(ラベル)の大きさ
cex.main = 0.8 # メインタイトルの字の大きさ
)
axis(side=1, at=c(1, 2, 3, 4, 5, 6), labels = col)
axis(side=2, at=c(50, 51, 52, 53, 54, 55))
## 凡例をつける
legend (2.5, 51, #凡例左上の位置を座標で指定
c("平均学級規模(22.92) - 1SD(6.77)", "平均学級規模(22,92)", "平均学級規模(22.92) + 1SD(6.77)"),
lwd = 1, #線を太めに
lty = c(2, 1, 4), #線種
col = c(1, 1, 1), #線の
pch = c(15, 16, 17),
bty = "n", #枠なし
bg = "n", #背景色なし
cex = 1.0, #文字の大きさを基準の__%
)
#大卒率 中
mar = c(4,4,4,4) # 余白を小さく
# oma = c(0,0,0,0) # デバイス領域(インチで幅と高さ)
par(family = "HiraKakuProN-W3") #Macintoshの場合
matplot(plotdata.koku[,4:6], type="b", xlim=c(1, 6), ylim = c(50, 55), axes=F,
xlab="学年", ylab="学力偏差値(国語)",
main="大学・大学院卒業者数の割合が平均(0.08)の学区の学校の場合",
mgp = c(2, 0.7, 0),
lwd=1, #やや太く
lty = c(2, 1, 4), #線種は以下の通り
## lty="solid" or 1→実線
## lty="dashed" or 2→ダッシュ
## lty="dotted" or 3→ドット
## lty="dotdash" or 4→ドットとダッシュ
## lty="longdash" or 5→長いダッシュ
## lty="twodash" or 6→二つのダッシュ
col = c(1, 1, 1), #色は以下の通り
## 順に黒,赤,緑,青,水色,紫,黄,灰
pch = c(15, 16, 17),
cex = 1, # 記号の大きさ(標準は1)
cex.lab = 1.0, # 軸の説明の字の大きさ
cex.axis = 1.0, # 軸の数字等(ラベル)の大きさ
cex.main = 0.8 # メインタイトルの字の大きさ
)
axis(side=1, at=c(1, 2, 3, 4, 5, 6), labels = col)
axis(side=2, at=c(50, 51, 52, 53, 54, 55))
## 凡例をつける
legend (2.5, 51, #凡例左上の位置を座標で指定
c("平均学級規模(22.92) - 1SD(6.77)", "平均学級規模(22,92)", "平均学級規模(22.92) + 1SD(6.77)"),
lwd = 1, #線を太めに
lty = c(2, 1, 4), #線種
col = c(1, 1, 1), #線の
pch = c(15, 16, 17),
bty = "n", #枠なし
bg = "n", #背景色なし
cex = 1.0, #文字の大きさを基準の__%
)
#大卒率 高
mar = c(4,4,4,4) # 余白を小さく
# oma = c(0,0,0,0) # デバイス領域(インチで幅と高さ)
par(family = "HiraKakuProN-W3") #Macintoshの場合
matplot(plotdata.koku[,7:9], type="b", xlim=c(1, 6), ylim = c(50, 55), axes=F,
xlab="学年", ylab="学力偏差値(国語)",
main="大学・大学院卒業者数の割合が平均(0.08)より1SD(0.03)高い学区の学校の場合",
mgp = c(2, 0.7, 0),
lwd=1, #やや太く
lty = c(2, 1, 4), #線種は以下の通り
## lty="solid" or 1→実線
## lty="dashed" or 2→ダッシュ
## lty="dotted" or 3→ドット
## lty="dotdash" or 4→ドットとダッシュ
## lty="longdash" or 5→長いダッシュ
## lty="twodash" or 6→二つのダッシュ
col = c(1, 1, 1), #色は以下の通り
## 順に黒,赤,緑,青,水色,紫,黄,灰
pch = c(15, 16, 17),
cex = 1, # 記号の大きさ(標準は1)
cex.lab = 1.0, # 軸の説明の字の大きさ
cex.axis = 1.0, # 軸の数字等(ラベル)の大きさ
cex.main = 0.8 # メインタイトルの字の大きさ
)
axis(side=1, at=c(1, 2, 3, 4, 5, 6), labels = col)
axis(side=2, at=c(50, 51, 52, 53, 54, 55))
## 凡例をつける
legend (2.5, 51, #凡例左上の位置を座標で指定
c("平均学級規模(22.92) - 1SD(6.77)", "平均学級規模(22,92)", "平均学級規模(22.92) + 1SD(6.77)"),
lwd = 1, #線を太めに
lty = c(2, 1, 4), #線種
col = c(1, 1, 1), #線の
pch = c(15, 16, 17),
bty = "n", #枠なし
bg = "n", #背景色なし
cex = 1.0, #文字の大きさを基準の__%
)
col <- c("3年", "4年", "5年", "6年")
#大卒率 低
mar = c(4,4,4,4) # 余白を小さく
# oma = c(0,0,0,0) # デバイス領域(インチで幅と高さ)
par(family = "HiraKakuProN-W3") #Macintoshの場合
matplot(plotdata.shak[,1:3], type="b", xlim=c(1, 4), ylim = c(50, 55), axes=F,
xlab="学年", ylab="学力偏差値(社会)",
main="大学・大学院卒業者数の割合が平均(0.07)より1SD(0.03)低い学区の学校の場合",
mgp = c(2, 0.7, 0),
lwd=1, #やや太く
lty = c(2, 1, 4), #線種は以下の通り
## lty="solid" or 1→実線
## lty="dashed" or 2→ダッシュ
## lty="dotted" or 3→ドット
## lty="dotdash" or 4→ドットとダッシュ
## lty="longdash" or 5→長いダッシュ
## lty="twodash" or 6→二つのダッシュ
col = c(1, 1, 1), #色は以下の通り
## 順に黒,赤,緑,青,水色,紫,黄,灰
pch = c(15, 16, 17),
cex = 1, # 記号の大きさ(標準は1)
cex.lab = 1.0, # 軸の説明の字の大きさ
cex.axis = 1.0, # 軸の数字等(ラベル)の大きさ
cex.main = 0.8 # メインタイトルの字の大きさ
)
axis(side=1, at=c(1, 2, 3, 4), labels = col)
axis(side=2, at=c(50, 51, 52, 53, 54, 55))
## 凡例をつける
legend (1.5, 51.5, #凡例左上の位置を座標で指定
c("平均学級規模(22.06) - 1SD(5.98)", "平均学級規模(22.06)", "平均学級規模(22.06) + 1SD(5.98)"),
lwd = 1, #線を太めに
lty = c(2, 1, 4), #線種
col = c(1, 1, 1), #線の
pch = c(15, 16, 17),
bty = "n", #枠なし
bg = "n", #背景色なし
cex = 1.0, #文字の大きさを基準の__%
)
#大卒率 中
mar = c(4,4,4,4) # 余白を小さく
# oma = c(0,0,0,0) # デバイス領域(インチで幅と高さ)
par(family = "HiraKakuProN-W3") #Macintoshの場合
matplot(plotdata.shak[,4:6], type="b", xlim=c(1, 4), ylim = c(50, 55), axes=F,
xlab="学年", ylab="学力偏差値(社会)",
main="大学・大学院卒業者数の割合が平均(0.07)の学区の学校の場合",
mgp = c(2, 0.7, 0),
lwd=1, #やや太く
lty = c(2, 1, 4), #線種は以下の通り
## lty="solid" or 1→実線
## lty="dashed" or 2→ダッシュ
## lty="dotted" or 3→ドット
## lty="dotdash" or 4→ドットとダッシュ
## lty="longdash" or 5→長いダッシュ
## lty="twodash" or 6→二つのダッシュ
col = c(1, 1, 1), #色は以下の通り
## 順に黒,赤,緑,青,水色,紫,黄,灰
pch = c(15, 16, 17),
cex = 1, # 記号の大きさ(標準は1)
cex.lab = 1.0, # 軸の説明の字の大きさ
cex.axis = 1.0, # 軸の数字等(ラベル)の大きさ
cex.main = 0.8 # メインタイトルの字の大きさ
)
axis(side=1, at=c(1, 2, 3, 4), labels = col)
axis(side=2, at=c(50, 51, 52, 53, 54, 55))
## 凡例をつける
legend (1.5, 51.5, #凡例左上の位置を座標で指定
c("平均学級規模(22.06) - 1SD(5.98)", "平均学級規模(22.06)", "平均学級規模(22.06) + 1SD(5.98)"),
lwd = 1, #線を太めに
lty = c(2, 1, 4), #線種
col = c(1, 1, 1), #線の
pch = c(15, 16, 17),
bty = "n", #枠なし
bg = "n", #背景色なし
cex = 1.0, #文字の大きさを基準の__%
)
#大卒率 高
mar = c(4,4,4,4) # 余白を小さく
# oma = c(0,0,0,0) # デバイス領域(インチで幅と高さ)
par(family = "HiraKakuProN-W3") #Macintoshの場合
matplot(plotdata.shak[,7:9], type="b", xlim=c(1, 4), ylim = c(50, 55), axes=F,
xlab="学年", ylab="学力偏差値(社会)",
main="大学・大学院卒業者数の割合が平均(0.07)より1SD(0.03)高い学区の学校の場合",
mgp = c(2, 0.7, 0),
lwd=1, #やや太く
lty = c(2, 1, 4), #線種は以下の通り
## lty="solid" or 1→実線
## lty="dashed" or 2→ダッシュ
## lty="dotted" or 3→ドット
## lty="dotdash" or 4→ドットとダッシュ
## lty="longdash" or 5→長いダッシュ
## lty="twodash" or 6→二つのダッシュ
col = c(1, 1, 1), #色は以下の通り
## 順に黒,赤,緑,青,水色,紫,黄,灰
pch = c(15, 16, 17),
cex = 1, # 記号の大きさ(標準は1)
cex.lab = 1.0, # 軸の説明の字の大きさ
cex.axis = 1.0, # 軸の数字等(ラベル)の大きさ
cex.main = 0.8 # メインタイトルの字の大きさ
)
axis(side=1, at=c(1, 2, 3, 4), labels = col)
axis(side=2, at=c(50, 51, 52, 53, 54, 55))
## 凡例をつける
legend (1.5, 51.5, #凡例左上の位置を座標で指定
c("平均学級規模(22.06) - 1SD(5.98)", "平均学級規模(22.06)", "平均学級規模(22.06) + 1SD(5.98)"),
lwd = 1, #線を太めに
lty = c(2, 1, 4), #線種
col = c(1, 1, 1), #線の
pch = c(15, 16, 17),
bty = "n", #枠なし
bg = "n", #背景色なし
cex = 1.0, #文字の大きさを基準の__%
)
col <- c("1年", "2年", "3年", "4年", "5年", "6年")
par(oma = c(0, 0, 4, 0))
par(mfrow=c(1,3))
#大卒率 低
mar = c(4,4,4,4) # 余白を小さく
# oma = c(0,0,0,0) # デバイス領域(インチで幅と高さ)
par(family = "HiraKakuProN-W3") #Macintoshの場合
matplot(plotdata.koku[,1:3], type="b", xlim=c(1, 6), ylim = c(50, 55), axes=F,
xlab="学年", ylab="学力偏差値(国語)",
main="大学・大学院卒業者数の割合が平均(0.08)より1SD(0.03)低い学区の学校の場合",
mgp = c(2, 0.7, 0),
lwd=1, #やや太く
lty = c(2, 1, 4), #線種は以下の通り
## lty="solid" or 1→実線
## lty="dashed" or 2→ダッシュ
## lty="dotted" or 3→ドット
## lty="dotdash" or 4→ドットとダッシュ
## lty="longdash" or 5→長いダッシュ
## lty="twodash" or 6→二つのダッシュ
col = c(1, 1, 1), #色は以下の通り
## 順に黒,赤,緑,青,水色,紫,黄,灰
pch = c(15, 16, 17),
cex = 1, # 記号の大きさ(標準は1)
cex.lab = 1.0, # 軸の説明の字の大きさ
cex.axis = 1.0, # 軸の数字等(ラベル)の大きさ
cex.main = 0.8 # メインタイトルの字の大きさ
)
axis(side=1, at=c(1, 2, 3, 4, 5, 6), labels = col)
axis(side=2, at=c(50, 51, 52, 53, 54, 55))
## 凡例をつける
legend (2.5, 51, #凡例左上の位置を座標で指定
c("平均学級規模(22.92) - 1SD(6.77)", "平均学級規模(22,92)", "平均学級規模(22.92) + 1SD(6.77)"),
lwd = 1, #線を太めに
lty = c(2, 1, 4), #線種
col = c(1, 1, 1), #線の
pch = c(15, 16, 17),
bty = "n", #枠なし
bg = "n", #背景色なし
cex = 1.0, #文字の大きさを基準の__%
)
#大卒率 中
mar = c(4,4,4,4) # 余白を小さく
# oma = c(0,0,0,0) # デバイス領域(インチで幅と高さ)
par(family = "HiraKakuProN-W3") #Macintoshの場合
matplot(plotdata.koku[,4:6], type="b", xlim=c(1, 6), ylim = c(50, 55), axes=F,
xlab="学年", ylab="学力偏差値(国語)",
main="大学・大学院卒業者数の割合が平均(0.08)の学区の学校の場合",
mgp = c(2, 0.7, 0),
lwd=1, #やや太く
lty = c(2, 1, 4), #線種は以下の通り
## lty="solid" or 1→実線
## lty="dashed" or 2→ダッシュ
## lty="dotted" or 3→ドット
## lty="dotdash" or 4→ドットとダッシュ
## lty="longdash" or 5→長いダッシュ
## lty="twodash" or 6→二つのダッシュ
col = c(1, 1, 1), #色は以下の通り
## 順に黒,赤,緑,青,水色,紫,黄,灰
pch = c(15, 16, 17),
cex = 1, # 記号の大きさ(標準は1)
cex.lab = 1.0, # 軸の説明の字の大きさ
cex.axis = 1.0, # 軸の数字等(ラベル)の大きさ
cex.main = 0.8 # メインタイトルの字の大きさ
)
axis(side=1, at=c(1, 2, 3, 4, 5, 6), labels = col)
axis(side=2, at=c(50, 51, 52, 53, 54, 55))
## 凡例をつける
legend (2.5, 51, #凡例左上の位置を座標で指定
c("平均学級規模(22.92) - 1SD(6.77)", "平均学級規模(22,92)", "平均学級規模(22.92) + 1SD(6.77)"),
lwd = 1, #線を太めに
lty = c(2, 1, 4), #線種
col = c(1, 1, 1), #線の
pch = c(15, 16, 17),
bty = "n", #枠なし
bg = "n", #背景色なし
cex = 1.0, #文字の大きさを基準の__%
)
#大卒率 高
mar = c(4,4,4,4) # 余白を小さく
# oma = c(0,0,0,0) # デバイス領域(インチで幅と高さ)
par(family = "HiraKakuProN-W3") #Macintoshの場合
matplot(plotdata.koku[,7:9], type="b", xlim=c(1, 6), ylim = c(50, 55), axes=F,
xlab="学年", ylab="学力偏差値(国語)",
main="大学・大学院卒業者数の割合が平均(0.08)より1SD(0.03)高い学区の学校の場合",
mgp = c(2, 0.7, 0),
lwd=1, #やや太く
lty = c(2, 1, 4), #線種は以下の通り
## lty="solid" or 1→実線
## lty="dashed" or 2→ダッシュ
## lty="dotted" or 3→ドット
## lty="dotdash" or 4→ドットとダッシュ
## lty="longdash" or 5→長いダッシュ
## lty="twodash" or 6→二つのダッシュ
col = c(1, 1, 1), #色は以下の通り
## 順に黒,赤,緑,青,水色,紫,黄,灰
pch = c(15, 16, 17),
cex = 1, # 記号の大きさ(標準は1)
cex.lab = 1.0, # 軸の説明の字の大きさ
cex.axis = 1.0, # 軸の数字等(ラベル)の大きさ
cex.main = 0.8 # メインタイトルの字の大きさ
)
axis(side=1, at=c(1, 2, 3, 4, 5, 6), labels = col)
axis(side=2, at=c(50, 51, 52, 53, 54, 55))
## 凡例をつける
legend (2.5, 51, #凡例左上の位置を座標で指定
c("平均学級規模(22.92) - 1SD(6.77)", "平均学級規模(22,92)", "平均学級規模(22.92) + 1SD(6.77)"),
lwd = 1, #線を太めに
lty = c(2, 1, 4), #線種
col = c(1, 1, 1), #線の
pch = c(15, 16, 17),
bty = "n", #枠なし
bg = "n", #背景色なし
cex = 1.0, #文字の大きさを基準の__%
)
col <- c("3年", "4年", "5年", "6年")
par(oma = c(0, 0, 4, 0))
par(mfrow=c(1,3))
#大卒率 低
mar = c(4,4,4,4) # 余白を小さく
# oma = c(0,0,0,0) # デバイス領域(インチで幅と高さ)
par(family = "HiraKakuProN-W3") #Macintoshの場合
matplot(plotdata.shak[,1:3], type="b", xlim=c(1, 4), ylim = c(50, 55), axes=F,
xlab="学年", ylab="学力偏差値(社会)",
main="大学・大学院卒業者数の割合が平均(0.07)より1SD(0.03)低い学区の学校の場合",
mgp = c(2, 0.7, 0),
lwd=1, #やや太く
lty = c(2, 1, 4), #線種は以下の通り
## lty="solid" or 1→実線
## lty="dashed" or 2→ダッシュ
## lty="dotted" or 3→ドット
## lty="dotdash" or 4→ドットとダッシュ
## lty="longdash" or 5→長いダッシュ
## lty="twodash" or 6→二つのダッシュ
col = c(1, 1, 1), #色は以下の通り
## 順に黒,赤,緑,青,水色,紫,黄,灰
pch = c(15, 16, 17),
cex = 1, # 記号の大きさ(標準は1)
cex.lab = 1.0, # 軸の説明の字の大きさ
cex.axis = 1.0, # 軸の数字等(ラベル)の大きさ
cex.main = 0.8 # メインタイトルの字の大きさ
)
axis(side=1, at=c(1, 2, 3, 4), labels = col)
axis(side=2, at=c(50, 51, 52, 53, 54, 55))
## 凡例をつける
legend (2.5, 51, #凡例左上の位置を座標で指定
c("平均学級規模(22.06) - 1SD(5.98)", "平均学級規模(22.06)", "平均学級規模(22.06) + 1SD(5.98)"),
lwd = 1, #線を太めに
lty = c(2, 1, 4), #線種
col = c(1, 1, 1), #線の
pch = c(15, 16, 17),
bty = "n", #枠なし
bg = "n", #背景色なし
cex = 1.0, #文字の大きさを基準の__%
)
#大卒率 中
mar = c(4,4,4,4) # 余白を小さく
# oma = c(0,0,0,0) # デバイス領域(インチで幅と高さ)
par(family = "HiraKakuProN-W3") #Macintoshの場合
matplot(plotdata.shak[,4:6], type="b", xlim=c(1, 4), ylim = c(50, 55), axes=F,
xlab="学年", ylab="学力偏差値(社会)",
main="大学・大学院卒業者数の割合が平均(0.07)の学区の学校の場合",
mgp = c(2, 0.7, 0),
lwd=1, #やや太く
lty = c(2, 1, 4), #線種は以下の通り
## lty="solid" or 1→実線
## lty="dashed" or 2→ダッシュ
## lty="dotted" or 3→ドット
## lty="dotdash" or 4→ドットとダッシュ
## lty="longdash" or 5→長いダッシュ
## lty="twodash" or 6→二つのダッシュ
col = c(1, 1, 1), #色は以下の通り
## 順に黒,赤,緑,青,水色,紫,黄,灰
pch = c(15, 16, 17),
cex = 1, # 記号の大きさ(標準は1)
cex.lab = 1.0, # 軸の説明の字の大きさ
cex.axis = 1.0, # 軸の数字等(ラベル)の大きさ
cex.main = 0.8 # メインタイトルの字の大きさ
)
axis(side=1, at=c(1, 2, 3, 4), labels = col)
axis(side=2, at=c(50, 51, 52, 53, 54, 55))
## 凡例をつける
legend (2.5, 51, #凡例左上の位置を座標で指定
c("平均学級規模(22.06) - 1SD(5.98)", "平均学級規模(22.06)", "平均学級規模(22.06) + 1SD(5.98)"),
lwd = 1, #線を太めに
lty = c(2, 1, 4), #線種
col = c(1, 1, 1), #線の
pch = c(15, 16, 17),
bty = "n", #枠なし
bg = "n", #背景色なし
cex = 1.0, #文字の大きさを基準の__%
)
#大卒率 高
mar = c(4,4,4,4) # 余白を小さく
# oma = c(0,0,0,0) # デバイス領域(インチで幅と高さ)
par(family = "HiraKakuProN-W3") #Macintoshの場合
matplot(plotdata.shak[,7:9], type="b", xlim=c(1, 4), ylim = c(50, 55), axes=F,
xlab="学年", ylab="学力偏差値(社会)",
main="大学・大学院卒業者数の割合が平均(0.07)より1SD(0.03)高い学区の学校の場合",
mgp = c(2, 0.7, 0),
lwd=1, #やや太く
lty = c(2, 1, 4), #線種は以下の通り
## lty="solid" or 1→実線
## lty="dashed" or 2→ダッシュ
## lty="dotted" or 3→ドット
## lty="dotdash" or 4→ドットとダッシュ
## lty="longdash" or 5→長いダッシュ
## lty="twodash" or 6→二つのダッシュ
col = c(1, 1, 1), #色は以下の通り
## 順に黒,赤,緑,青,水色,紫,黄,灰
pch = c(15, 16, 17),
cex = 1, # 記号の大きさ(標準は1)
cex.lab = 1.0, # 軸の説明の字の大きさ
cex.axis = 1.0, # 軸の数字等(ラベル)の大きさ
cex.main = 0.8 # メインタイトルの字の大きさ
)
axis(side=1, at=c(1, 2, 3, 4), labels = col)
axis(side=2, at=c(50, 51, 52, 53, 54, 55))
## 凡例をつける
legend (2.5, 51, #凡例左上の位置を座標で指定
c("平均学級規模(22.06) - 1SD(5.98)", "平均学級規模(22.06)", "平均学級規模(22.06) + 1SD(5.98)"),
lwd = 1, #線を太めに
lty = c(2, 1, 4), #線種
col = c(1, 1, 1), #線の
pch = c(15, 16, 17),
bty = "n", #枠なし
bg = "n", #背景色なし
cex = 1.0, #文字の大きさを基準の__%
)