GLM(Generalized Linear Model)를 통한 inven 예측 R code = 1.Btv_Preroll_인벤예측_요약본_20190712-GLM테스트판(중요).R 일반화 선형모형 - gaussian, Gamma, inverse.gaussian

if(!require(ggplot2)){install.packages("ggplot2"); library(ggplot2)}
## Loading required package: ggplot2
if(!require(dplyr)){install.packages("dplyr"); library(dplyr)}
## Loading required package: dplyr
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
###  ★★★★★★ 모든 변수명 지우기
rm(list =  ls())
gc()
##           used (Mb) gc trigger (Mb) max used (Mb)
## Ncells  588765 31.5    1212858 64.8  1212858 64.8
## Vcells 1069292  8.2    8388608 64.0  1753441 13.4
#getwd()
setwd("/home/mjs0428/inven_forcast")

btv_pre_roll <- read.csv("./Btv_Preroll-Req_Inv_Res_Imp-data_20190702.csv", header = TRUE, sep = ",", stringsAsFactors = FALSE, fileEncoding = "euc-kr")
glimpse(btv_pre_roll)
## Observations: 548
## Variables: 7
## $ Date            <chr> "2018-01-01", "2018-01-02", "2018-01-03", "2018-…
## $ VOD_시청시간_초 <chr> "8,421,536,616", "7,878,348,464", "7,498,034,394", "7…
## $ VOD_시청건수    <chr> "4,496,473", "4,658,646", "4,535,338", "4,500,479", …
## $ REQ             <chr> "4,567,997", "4,630,415", "4,533,702", "4,490,70…
## $ INV             <chr> "7,377,096", "7,110,607", "6,932,244", "6,839,95…
## $ Res             <chr> "4,787,165", "4,391,051", "4,252,549", "4,101,29…
## $ Imp             <chr> "4,498,714", "4,141,349", "4,011,362", "3,872,03…
# 숫자형 데이터 변환
btv_pre_roll$REQ  <- as.numeric(gsub(",", "",  btv_pre_roll$REQ))
btv_pre_roll$INV <- as.numeric(gsub(",", "",  btv_pre_roll$INV))
btv_pre_roll$Res <- as.numeric(gsub(",", "",  btv_pre_roll$Res))
btv_pre_roll$Imp <- as.numeric(gsub(",", "",  btv_pre_roll$Imp))

btv_pre_roll$VOD_시청시간_초  <- round(as.numeric(gsub(",", "", btv_pre_roll$VOD_시청시간_초))/3600,0)
# 변수명 바꾸기
btv_pre_roll <- rename(btv_pre_roll, VOD_시청시간 = VOD_시청시간_초)
btv_pre_roll$VOD_시청건수  <- as.numeric(gsub(",", "",  btv_pre_roll$VOD_시청건수))
# 날짜형 타입으로 변환
btv_pre_roll$Date  <- as.Date(btv_pre_roll$Date)

### VOD 시청건수와 큰 차이 데이터 대체처리, 260만 미만 8개
btv_pre_roll$REQ_chg_flag = FALSE

arrange(btv_pre_roll %>% filter(REQ < 2650000), REQ)
##          Date VOD_시청시간 VOD_시청건수     REQ     INV     Res     Imp
## 1  2018-09-30      2135526      3896865  221664  297700  209140  554894
## 2  2018-07-02      1775243      3532602  736092 1189102  705927  709272
## 3  2018-10-01      1755646      3356570 2324932 2846820 2099119 1355917
## 4  2018-12-07      1807782      3567662 2466112 2872066 2032149 2852099
## 5  2018-02-16      1448428      2751726 2492996 4050293 3108664 2858587
## 6  2019-06-11      1328498      2600687 2577232 4380563 2897582 2809274
## 7  2018-12-06      1725200      3412828 2589182 2954937 2111337 2770486
## 8  2018-07-10      1709360      3476201 2590101 4002227 2311666 2309964
## 9  2019-05-31      1369062      2656316 2618025 4496329 2779988 2697892
## 10 2019-06-12      1340062      2657927 2628286 4491931 2957502 2867923
## 11 2019-05-30      1397194      2680261 2642520 4534099 2751991 2674374
##    REQ_chg_flag
## 1         FALSE
## 2         FALSE
## 3         FALSE
## 4         FALSE
## 5         FALSE
## 6         FALSE
## 7         FALSE
## 8         FALSE
## 9         FALSE
## 10        FALSE
## 11        FALSE
btv_pre_roll$REQ_chg_flag [btv_pre_roll$REQ < 2600000] <- TRUE
#btv_pre_roll$REQ [REQ < 2600000] <- round(btv_pre_roll$VOD_시청건수 [REQ < 2600000] * 0.98, 0)
btv_pre_roll$REQ [btv_pre_roll$REQ < 2600000] <- btv_pre_roll$VOD_시청건수 [btv_pre_roll$REQ < 2600000]
filter(btv_pre_roll, REQ_chg_flag == TRUE)
##         Date VOD_시청시간 VOD_시청건수     REQ     INV     Res     Imp
## 1 2018-02-16      1448428      2751726 2751726 4050293 3108664 2858587
## 2 2018-07-02      1775243      3532602 3532602 1189102  705927  709272
## 3 2018-07-10      1709360      3476201 3476201 4002227 2311666 2309964
## 4 2018-09-30      2135526      3896865 3896865  297700  209140  554894
## 5 2018-10-01      1755646      3356570 3356570 2846820 2099119 1355917
## 6 2018-12-06      1725200      3412828 3412828 2954937 2111337 2770486
## 7 2018-12-07      1807782      3567662 3567662 2872066 2032149 2852099
## 8 2019-06-11      1328498      2600687 2600687 4380563 2897582 2809274
##   REQ_chg_flag
## 1         TRUE
## 2         TRUE
## 3         TRUE
## 4         TRUE
## 5         TRUE
## 6         TRUE
## 7         TRUE
## 8         TRUE
###2018-05-15 ~ 2018-06-12까지 이상 데이터 대체 처리 >> 29개
btv_pre_roll$REQ_chg_flag [btv_pre_roll$Date >= '2018-05-15' & btv_pre_roll$Date <= '2018-06-12'] <- TRUE
btv_pre_roll$REQ [btv_pre_roll$Date >= '2018-05-15' & btv_pre_roll$Date <= '2018-06-12'] <- 
  btv_pre_roll$VOD_시청건수 [btv_pre_roll$Date >= '2018-05-15' & btv_pre_roll$Date <= '2018-06-12']

## btv_pre_roll$REQ/btv_pre_roll$VOD_시청건수 ## >>> VOD_시청건수를 가지고 예측 후에 비교분석하여 나중에 검토할 것...
## boxplot(btv_pre_roll$REQ/btv_pre_roll$VOD_시청건수)
## summary(btv_pre_roll$REQ/btv_pre_roll$VOD_시청건수)
## filter(btv_pre_roll, btv_pre_roll$REQ/btv_pre_roll$VOD_시청건수 < 0.9 | btv_pre_roll$REQ/btv_pre_roll$VOD_시청건수  > 1.2)

ggplot(btv_pre_roll, aes(x=Date, y=REQ)) +
  geom_point() + geom_smooth(method = 'lm', color = 'red', linetype =2) + # 직선 추세선 추가
  geom_smooth() + # 곡선 추세선 추가
  ggtitle("Raw Data - after correction")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

# 요일  구하기
btv_pre_roll$weekday = factor(weekdays(btv_pre_roll$Date), 
                              levels = c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"))
summary(btv_pre_roll$weekday)
##    Monday   Tuesday Wednesday  Thursday    Friday  Saturday    Sunday 
##        79        79        78        78        78        78        78
# 월(month)  구하기
btv_pre_roll$month <-factor(substr(btv_pre_roll$Date,6,7),
                            levels = c('01', '02', '03', '04', '05', '06', '07', '08', '09', '10', '11', '12'))
summary(btv_pre_roll$month)
## 01 02 03 04 05 06 07 08 09 10 11 12 
## 62 56 62 60 62 60 33 31 30 31 30 31
length(btv_pre_roll$month)
## [1] 548
# 특일 구하기
# 참고 페이지 : https://m.blog.naver.com/hancury/221057426711
# 사이트 : https://www.data.go.kr/
# 메뉴명 : 마이페이지 > OPEN API > 개발계정 상세보기
#인증키 "SD5uTucKQxefBuN79R8TKiBa15fAbw5j1id%2FdBH0SsWFDK4boXqDpgMPtc8QJ8UNyaSO8HpGJf%2FAbh65oBzg7g%3D%3D"
if(!require(glue)){install.packages("glue"); library(glue)}
## Loading required package: glue
## 
## Attaching package: 'glue'
## The following object is masked from 'package:dplyr':
## 
##     collapse
if(!require(XML)){install.packages("XML"); library(XML)}
## Loading required package: XML
if(!require(stringr)){install.packages("stringr"); library(stringr)}
## Loading required package: stringr
api.key <- "SD5uTucKQxefBuN79R8TKiBa15fAbw5j1id%2FdBH0SsWFDK4boXqDpgMPtc8QJ8UNyaSO8HpGJf%2FAbh65oBzg7g%3D%3D"

url.format <- 
  'http://apis.data.go.kr/B090041/openapi/service/SpcdeInfoService/getRestDeInfo?ServiceKey={key}&solYear={year}&solMonth={month}'

holiday.request <- function(key, year, month) glue(url.format)

df_holiday <- data.frame(dateName=NULL, Date=NULL)

for(m in 1:12){
  holiday_2018 <- xmlToList(holiday.request(api.key, 2018, str_pad(m, 2, pad=0)))
  holiday_2019 <- xmlToList(holiday.request(api.key, 2019, str_pad(m, 2, pad=0)))
  
  items_2018 <- holiday_2018$body$items
  items_2019 <- holiday_2019$body$items
  items_test <- holiday_2018$body$items
  items_test <- holiday_2019$body$items
  
  for(item_2018 in items_2018){
    if(item_2018$isHoliday == 'Y') {
      #print(paste(item_2018$dateName, item_2018$locdate, sep=' : '))
      df_holiday <- rbind(df_holiday, 
                          data.frame(dateName = item_2018$dateName, 
                                     Date = (paste(substr(item_2018$locdate,1,4),
                                                   substr(item_2018$locdate,5,6), 
                                                   substr(item_2018$locdate,7,8), sep = '-')),
                                     stringsAsFactors = FALSE))
    }
  }
  
  for(item_2019 in items_2019){
    if(item_2019$isHoliday == 'Y') {
      #print(paste(item_2019$dateName, item_2019$locdate, sep=' : '))
      df_holiday <- rbind(df_holiday, 
                          data.frame(dateName = item_2019$dateName, 
                                     Date = (paste(substr(item_2019$locdate,1,4),
                                                   substr(item_2019$locdate,5,6), 
                                                   substr(item_2019$locdate,7,8), sep = '-')),
                                     stringsAsFactors = FALSE))
    }
  }
  
}

# 날짜 데이터의 데이터 타입 변환
df_holiday$Date <- as.Date(df_holiday$Date)

### Left 조인하기 : 광고 데이터 + 특일 데이터..
btv_pre_roll <- left_join(btv_pre_roll, df_holiday)
## Joining, by = "Date"
# 특일 데이터 범주화
btv_pre_roll <- mutate(btv_pre_roll, isHolyday = as.numeric(!is.na(dateName)))

# 필요한 데이터 잘라내기
#head(btv_pre_roll); tail(btv_pre_roll)
btv_pre_roll2<- filter(btv_pre_roll, Date <= '2019-04-30')
btv_pre_roll3 <- filter(btv_pre_roll, Date <= '2019-05-31')
#tail(btv_pre_roll2); tail(btv_pre_roll3)

test_btv_pre_roll2 <- select(btv_pre_roll2, Date, REQ, weekday, month, isHolyday)
test_btv_pre_roll3 <- select(btv_pre_roll3, Date, REQ, weekday, month, isHolyday)
#tail(test_btv_pre_roll2); tail(test_btv_pre_roll3)

# 예측 Dataset 생성
# 예측할 날짜로 된 수열 생성하기

s_date2 <- as.Date("2019-05-01")
e_date2 <- as.Date("2019-05-31")
s_date3 <- as.Date("2019-06-01")
e_date3 <- as.Date("2019-06-30")
add_df2 <- data.frame(Date = seq(from = s_date2, to=e_date2, by=1))
add_df2$Date <- as.Date(add_df2$Date); add_df2$REQ <- NA; add_df2$weekday <- NA; add_df2$month <- NA; add_df2$isHolyday <- NA; 
add_df3 <- data.frame(Date = seq(from = s_date3, to=e_date3, by=1))
add_df3$Date <- as.Date(add_df3$Date); add_df3$REQ <- NA; add_df3$weekday <- NA; add_df3$month <- NA; add_df3$isHolyday <- NA;

# 요일  구하기
#Sys.setlocale("LC_TIME", "English")

#as.character.Date(weekdays(as.Date(add_df2$Date)))
#as.character(weekdays(as.Date('2019-10-01')))
#localeToCharset()
#as.character(weekdays(as.Date(add_df2$Date)))


add_df2$weekday = factor(weekdays(add_df2$Date), 
                         levels = c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"))
summary(add_df2$weekday)
##    Monday   Tuesday Wednesday  Thursday    Friday  Saturday    Sunday 
##         4         4         5         5         5         4         4
add_df3$weekday = factor(weekdays(add_df3$Date), 
                         levels = c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"))
summary(add_df3$weekday)
##    Monday   Tuesday Wednesday  Thursday    Friday  Saturday    Sunday 
##         4         4         4         4         4         5         5
# 월(month)  구하기
add_df2$month <-factor(substr(add_df2$Date,6,7),
                       levels = c('01', '02', '03', '04', '05', '06', '07', '08', '09', '10', '11', '12'))
summary(add_df2$month)
## 01 02 03 04 05 06 07 08 09 10 11 12 
##  0  0  0  0 31  0  0  0  0  0  0  0
add_df3$month <-factor(substr(add_df3$Date,6,7),
                       levels = c('01', '02', '03', '04', '05', '06', '07', '08', '09', '10', '11', '12'))
summary(add_df3$month)
## 01 02 03 04 05 06 07 08 09 10 11 12 
##  0  0  0  0  0 30  0  0  0  0  0  0
# 특일 데이터 범주화 추가
add_df2$isHolyday <- as.numeric(!is.na(left_join(add_df2, df_holiday)$dateName))
## Joining, by = "Date"
add_df3$isHolyday <- as.numeric(!is.na(left_join(add_df3, df_holiday)$dateName))
## Joining, by = "Date"
### 숙제 :: 특일 데이터가 몇개인지 세어볼 것???

# 기존 데이터와 예측치 결합
test_btv_pre_roll2 <- rbind(test_btv_pre_roll2, add_df2)
test_btv_pre_roll3 <- rbind(test_btv_pre_roll3, add_df3)

#View(filter(test_btv_pre_roll2, Date >= '2019-04-01'))
#View(filter(test_btv_pre_roll3, Date >= '2019-05-01'))

### 모델 평가하기as.numeric()
## 원래는 training dataset와 test dataset를 나눠서 테스트 해야 하지만...
## 표본이 작은 관계로..  관측치 데이터 전체를 사용하여 평가함...

# several models
model1 = lm(formula = REQ ~ I(as.numeric(Date)^3) + I(as.numeric(Date)^2) + 
              weekday:month + weekday:isHolyday + weekday:month:isHolyday, 
            data = btv_pre_roll2)

model2 = glm(formula = REQ ~ I(as.numeric(Date)^3) + I(as.numeric(Date)^2) + 
               weekday:month + weekday:isHolyday + weekday:month:isHolyday, 
             family = gaussian(link =  'identity'), data = btv_pre_roll2)

model3 = glm(formula = REQ ~ I(as.numeric(Date)^3) + I(as.numeric(Date)^2) + 
               weekday:month + weekday:isHolyday + weekday:month:isHolyday, 
             family = Gamma(link =  'inverse'), data = btv_pre_roll2)

model4 = glm(formula = REQ ~ I(as.numeric(Date)^3) + I(as.numeric(Date)^2) + 
               weekday:month + weekday:isHolyday + weekday:month:isHolyday, 
             family = inverse.gaussian(link =  '1/mu^2'), data = btv_pre_roll2)

#test_btv_pre_roll3
model1_2 = lm(formula = REQ ~ I(as.numeric(Date)^3) + I(as.numeric(Date)^2) + 
                weekday:month + weekday:isHolyday + weekday:month:isHolyday, 
              data = btv_pre_roll3)

model2_2 = glm(formula = REQ ~ I(as.numeric(Date)^3) + I(as.numeric(Date)^2) + 
                 weekday:month + weekday:isHolyday + weekday:month:isHolyday, 
               family = gaussian(link =  'identity'), data = btv_pre_roll3)

model3_2 = glm(formula = REQ ~ I(as.numeric(Date)^3) + I(as.numeric(Date)^2) + 
                 weekday:month + weekday:isHolyday + weekday:month:isHolyday, 
               family = Gamma(link =  'identity'), data = btv_pre_roll3)

model4_2 = glm(formula = REQ ~ I(as.numeric(Date)^3) + I(as.numeric(Date)^2) + 
                 weekday:month + weekday:isHolyday + weekday:month:isHolyday, 
               family = inverse.gaussian(link =  '1/mu^2'), data = btv_pre_roll3)

# 점/구간 추정 예측
m1_c_interval <- predict(model1, newdata=test_btv_pre_roll2, type='response', interval="confidence", level = 0.99)
## Warning in predict.lm(model1, newdata = test_btv_pre_roll2, type =
## "response", : prediction from a rank-deficient fit may be misleading
m1_p_interval <- predict(model1, newdata=test_btv_pre_roll2, type='response', interval="prediction")
## Warning in predict.lm(model1, newdata = test_btv_pre_roll2, type =
## "response", : prediction from a rank-deficient fit may be misleading
m2_c_interval <- predict(model2, newdata=test_btv_pre_roll2, type='response', interval="confidence")
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type
## == : prediction from a rank-deficient fit may be misleading
m2_p_interval <- predict(model2, newdata=test_btv_pre_roll2, type='response', interval="prediction")
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type
## == : prediction from a rank-deficient fit may be misleading
m3_c_interval <- predict(model3, newdata=test_btv_pre_roll2, type='response', interval="confidence")
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type
## == : prediction from a rank-deficient fit may be misleading
m3_p_interval <- predict(model3, newdata=test_btv_pre_roll2, type='response', interval="prediction")
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type
## == : prediction from a rank-deficient fit may be misleading
m4_c_interval <- predict(model4, newdata=test_btv_pre_roll2, type='response', interval="confidence")
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type
## == : prediction from a rank-deficient fit may be misleading
m4_p_interval <- predict(model4, newdata=test_btv_pre_roll2, type='response', interval="prediction")
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type
## == : prediction from a rank-deficient fit may be misleading
test_btv_pre_roll2$m1_fit <- m1_c_interval[,1] # fit
test_btv_pre_roll2$m1_cnf_lwr <- m1_c_interval[,2] # confience lower
test_btv_pre_roll2$m1_cnf_upr <- m1_c_interval[,3] # confience upper
test_btv_pre_roll2$m1_prd_lwr <- m1_p_interval[,2] # prediction lower
test_btv_pre_roll2$m1_prd_upr <- m1_p_interval[,3] # prediction upper

test_btv_pre_roll2$m2_fit <- m2_c_interval # fit

test_btv_pre_roll2$m3_fit <- m3_c_interval # fit

test_btv_pre_roll2$m4_fit <- m4_c_interval # fit

#test_btv_pre_roll2 %>% filter(Date >= '2019-05-01' & Date <= '2019-05-31') %>%
#  summarise(sum(m1_cnf_lwr), sum(m1_fit), sum(m1_cnf_upr), sum(m2_cnf_lwr), sum(m2_fit), sum(m2_cnf_upr), sum(m3_cnf_lwr), sum(m3_fit), sum(m3_cnf_upr), sum(m4_cnf_lwr), sum(m4_fit), sum(m4_cnf_upr))

test_btv_pre_roll2 %>% filter(Date >= '2019-05-01' & Date <= '2019-05-31') %>%
  summarise(sum(m1_cnf_lwr), sum(m1_fit), sum(m1_cnf_upr), sum(m2_fit), sum(m3_fit), sum(m4_fit))  
##   sum(m1_cnf_lwr) sum(m1_fit) sum(m1_cnf_upr) sum(m2_fit) sum(m3_fit)
## 1        94388014   105831672       117275329   105831672   105543903
##   sum(m4_fit)
## 1   105504004
pp <- ggplot(test_btv_pre_roll2, aes(x=Date))
pp2 <- pp + geom_point(aes(y = REQ), color = "black", alpha = 0.3)
pp3 <- pp2 + geom_point(aes(y = m1_fit), color = "red", alpha = 0.3)
pp4 <- pp2 + geom_point(aes(y = m2_c_interval), color = "red", alpha = 0.3)
pp5 <- pp2 + geom_point(aes(y = m3_c_interval), color = "red", alpha = 0.3)
pp6 <- pp2 + geom_point(aes(y = m4_c_interval), color = "red", alpha = 0.3)




#test_btv_pre_roll3
# 점/구간 추정 예측
m1_c_interval2 <- predict(model1_2, newdata=test_btv_pre_roll3, type='response', interval="confidence", level = 0.99)
## Warning in predict.lm(model1_2, newdata = test_btv_pre_roll3, type =
## "response", : prediction from a rank-deficient fit may be misleading
m1_p_interval2 <- predict(model1_2, newdata=test_btv_pre_roll3, type='response', interval="prediction")
## Warning in predict.lm(model1_2, newdata = test_btv_pre_roll3, type =
## "response", : prediction from a rank-deficient fit may be misleading
m2_c_interval2 <- predict(model2_2, newdata=test_btv_pre_roll3, type='response', interval="confidence")
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type
## == : prediction from a rank-deficient fit may be misleading
m2_p_interval2 <- predict(model2_2, newdata=test_btv_pre_roll3, type='response', interval="prediction")
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type
## == : prediction from a rank-deficient fit may be misleading
m3_c_interval2 <- predict(model3_2, newdata=test_btv_pre_roll3, type='response', interval="confidence")
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type
## == : prediction from a rank-deficient fit may be misleading
m3_p_interval2 <- predict(model3_2, newdata=test_btv_pre_roll3, type='response', interval="prediction")
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type
## == : prediction from a rank-deficient fit may be misleading
m4_c_interval2 <- predict(model4_2, newdata=test_btv_pre_roll3, type='response', interval="confidence")
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type
## == : prediction from a rank-deficient fit may be misleading
m4_p_interval2 <- predict(model4_2, newdata=test_btv_pre_roll3, type='response', interval="prediction")
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type
## == : prediction from a rank-deficient fit may be misleading
test_btv_pre_roll3$m1_fit <- m1_c_interval2[,1] # fit
test_btv_pre_roll3$m1_cnf_lwr <- m1_c_interval2[,2] # confience lower
test_btv_pre_roll3$m1_cnf_upr <- m1_c_interval2[,3] # confience upper
test_btv_pre_roll3$m1_prd_lwr <- m1_p_interval2[,2] # prediction lower
test_btv_pre_roll3$m1_prd_upr <- m1_p_interval2[,3] # prediction upper

test_btv_pre_roll3$m2_fit <- m2_c_interval2 # fit

test_btv_pre_roll3$m3_fit <- m3_c_interval2 # fit

test_btv_pre_roll3$m4_fit <- m4_c_interval2 # fit

#test_btv_pre_roll3 %>% filter(Date >= '2019-06-01' & Date <= '2019-06-30') %>%
#  summarise(sum(m1_cnf_lwr), sum(m1_fit), sum(m1_cnf_upr), sum(m2_cnf_lwr), sum(m2_fit), sum(m2_cnf_upr), sum(m3_cnf_lwr), sum(m3_fit), sum(m3_cnf_upr), sum(m4_cnf_lwr), sum(m4_fit), sum(m4_cnf_upr))

test_btv_pre_roll3 %>% filter(Date >= '2019-06-01' & Date <= '2019-06-30') %>%
  summarise(sum(m1_prd_lwr), sum(m1_fit), sum(m1_prd_upr), sum(m2_fit), sum(m3_fit), sum(m4_fit))  
##   sum(m1_prd_lwr) sum(m1_fit) sum(m1_prd_upr) sum(m2_fit) sum(m3_fit)
## 1        73443787    88901594       104359400    88901594    86832119
##   sum(m4_fit)
## 1    90640824
pp <- ggplot(test_btv_pre_roll3, aes(x=Date))
pp2 <- pp + geom_point(aes(y = REQ), color = "black", alpha = 0.3)
pp3 <- pp2 + geom_point(aes(y = m1_fit), color = "blue", alpha = 0.3)
pp4 <- pp2 + geom_point(aes(y = m2_c_interval2), color = "blue", alpha = 0.3)
pp5 <- pp2 + geom_point(aes(y = m3_c_interval2), color = "blue", alpha = 0.3)
pp6 <- pp2 + geom_point(aes(y = m4_c_interval2), color = "blue", alpha = 0.3)


filter(test_btv_pre_roll2, Date >= '2019-04-01')
##          Date     REQ   weekday month isHolyday  m1_fit m1_cnf_lwr
## 1  2019-04-01 3282152    Monday    04         0 3289837    3104535
## 2  2019-04-02 3184513   Tuesday    04         0 3211098    3017734
## 3  2019-04-03 3160823 Wednesday    04         0 3203076    2996555
## 4  2019-04-04 3087324  Thursday    04         0 3209590    3002911
## 5  2019-04-05 3107286    Friday    04         0 3239256    3032415
## 6  2019-04-06 3981096  Saturday    04         0 3908532    3701523
## 7  2019-04-07 3946311    Sunday    04         0 3914475    3716812
## 8  2019-04-08 3210087    Monday    04         0 3284184    3097018
## 9  2019-04-09 3292649   Tuesday    04         0 3205430    3010556
## 10 2019-04-10 3232678 Wednesday    04         0 3197391    2989044
## 11 2019-04-11 3185824  Thursday    04         0 3203888    2995332
## 12 2019-04-12 3153292    Friday    04         0 3233538    3024769
## 13 2019-04-13 3815088  Saturday    04         0 3902798    3693809
## 14 2019-04-14 4119517    Sunday    04         0 3908725    3708720
## 15 2019-04-15 3175054    Monday    04         0 3278418    3088899
## 16 2019-04-16 3068774   Tuesday    04         0 3199647    3002791
## 17 2019-04-17 3041754 Wednesday    04         0 3191592    2980966
## 18 2019-04-18 3101583  Thursday    04         0 3198073    2987184
## 19 2019-04-19 3117815    Friday    04         0 3227707    3016549
## 20 2019-04-20 3761864  Saturday    04         0 3896950    3685518
## 21 2019-04-21 3846860    Sunday    04         0 3902861    3700029
## 22 2019-04-22 3138914    Monday    04         0 3272538    3080151
## 23 2019-04-23 3122087   Tuesday    04         0 3193750    2994413
## 24 2019-04-24 3025289 Wednesday    04         0 3185679    2972299
## 25 2019-04-25 3144534  Thursday    04         0 3192144    2978442
## 26 2019-04-26 3217561    Friday    04         0 3221762    3007733
## 27 2019-04-27 3636698  Saturday    04         0 3890988    3676627
## 28 2019-04-28 3714765    Sunday    04         0 3896883    3690716
## 29 2019-04-29 3187055    Monday    04         0 3266544    3070756
## 30 2019-04-30 3024436   Tuesday    04         0 3187740    2985397
## 31 2019-05-01      NA Wednesday    05         0 3290099    2992034
## 32 2019-05-02      NA  Thursday    05         0 3214975    2915944
## 33 2019-05-03      NA    Friday    05         0 3150689    2825612
## 34 2019-05-04      NA  Saturday    05         0 3987377    3621653
## 35 2019-05-05      NA    Sunday    05         1 3497715    2783210
## 36 2019-05-06      NA    Monday    05         1 3942262    3352082
## 37 2019-05-07      NA   Tuesday    05         0 3395649    3068187
## 38 2019-05-08      NA Wednesday    05         0 3283958    2980684
## 39 2019-05-09      NA  Thursday    05         0 3208818    2904503
## 40 2019-05-10      NA    Friday    05         0 3144516    2814550
## 41 2019-05-11      NA  Saturday    05         0 3981187    3610974
## 42 2019-05-12      NA    Sunday    05         1 3491509    2774700
## 43 2019-05-13      NA    Monday    05         0 3297765    2925762
## 44 2019-05-14      NA   Tuesday    05         0 3389411    3056860
## 45 2019-05-15      NA Wednesday    05         0 3277703    2968809
## 46 2019-05-16      NA  Thursday    05         0 3202547    2892538
## 47 2019-05-17      NA    Friday    05         0 3138228    2802981
## 48 2019-05-18      NA  Saturday    05         0 3974883    3599814
## 49 2019-05-19      NA    Sunday    05         0 3742575    3405213
## 50 2019-05-20      NA    Monday    05         0 3291428    2914434
## 51 2019-05-21      NA   Tuesday    05         0 3383058    3045018
## 52 2019-05-22      NA Wednesday    05         0 3271334    2956404
## 53 2019-05-23      NA  Thursday    05         0 3196161    2880040
## 54 2019-05-24      NA    Friday    05         0 3131827    2790893
## 55 2019-05-25      NA  Saturday    05         0 3968465    3588160
## 56 2019-05-26      NA    Sunday    05         0 3736141    3392946
## 57 2019-05-27      NA    Monday    05         0 3284977    2902611
## 58 2019-05-28      NA   Tuesday    05         0 3376591    3032653
## 59 2019-05-29      NA Wednesday    05         0 3264851    2943460
## 60 2019-05-30      NA  Thursday    05         0 3189662    2867004
## 61 2019-05-31      NA    Friday    05         0 3125311    2778279
##    m1_cnf_upr m1_prd_lwr m1_prd_upr  m2_fit  m3_fit  m4_fit
## 1     3475138    2835668    3744006 3289837 3297556 3301685
## 2     3404463    2754995    3667202 3211098 3220428 3224994
## 3     3409597    2743658    3662494 3203076 3213765 3219095
## 4     3416268    2750130    3669049 3209590 3219968 3225213
## 5     3446097    2779755    3698757 3239256 3248511 3253367
## 6     4115540    3448987    4368076 3908532 3891653 3882855
## 7     4112138    3457310    4371640 3914475 3895171 3885206
## 8     3471350    2829575    3738794 3284184 3291730 3296027
## 9     3400303    2748956    3661903 3205430 3214852 3219702
## 10    3405738    2737497    3657284 3197391 3208194 3213814
## 11    3412444    2743940    3663836 3203888 3214357 3219883
## 12    3442308    2773534    3693542 3233538 3242782 3247879
## 13    4111786    3442736    4362859 3902798 3883406 3873502
## 14    4108729    3450973    4366477 3908725 3886882 3875804
## 15    3467937    2823246    3733589 3278418 3285788 3290262
## 16    3396503    2742683    3656611 3199647 3209166 3214309
## 17    3402217    2731100    3652084 3191592 3202513 3208433
## 18    3408962    2737512    3658634 3198073 3208636 3214453
## 19    3438864    2767074    3688339 3227707 3236940 3242287
## 20    4108382    3436245    4357655 3896950 3875005 3863996
## 21    4105693    3444391    4361330 3902861 3878438 3866249
## 22    3464924    2816673    3728403 3272538 3279733 3284391
## 23    3393088    2736166    3651335 3193750 3203372 3208816
## 24    3399060    2724456    3646902 3185679 3196724 3202952
## 25    3405846    2730835    3653453 3192144 3202806 3208923
## 26    3435791    2760365    3683158 3221762 3230988 3236594
## 27    4105350    3429503    4352474 3890988 3866452 3854339
## 28    4103050    3437556    4356209 3896883 3869843 3856544
## 29    3462332    2809844    3723243 3266544 3273566 3278415
## 30    3390083    2729396    3646084 3187740 3197469 3203225
## 31    3588164    2802544    3777654 3290099 3297857 3304662
## 32    3514005    2727079    3702871 3214975 3229092 3238443
## 33    3475766    2653277    3648102 3150689 3170566 3182036
## 34    4353101    3473941    4500812 3987377 3925994 3896607
## 35    4212219    2804214    4191216 3497715 3452166 3436462
## 36    4532441    3319864    4564659 3942262 3886326 3860226
## 37    3723111    2897335    3893963 3395649 3393262 3395940
## 38    3587233    2794553    3773363 3283958 3291446 3298398
## 39    3513132    2719041    3698595 3208818 3222926 3232529
## 40    3474481    2645250    3643782 3144516 3164603 3176408
## 41    4351399    3465899    4496475 3981187 3916828 3886253
## 42    4208318    2796638    4186380 3491509 3445055 3429332
## 43    3669767    2781734    3813795 3297765 3302745 3308953
## 44    3721962    2889156    3889665 3389411 3386351 3389015
## 45    3586597    2786276    3769131 3277703 3284923 3292032
## 46    3512555    2710714    3694379 3202547 3216653 3226519
## 47    3473476    2636937    3639520 3138228 3158537 3170686
## 48    4349952    3457573    4492193 3974883 3907512 3875757
## 49    4079938    3240466    4244685 3742575 3701131 3684844
## 50    3668422    2773312    3809544 3291428 3296080 3302427
## 51    3721098    2880686    3885430 3383058 3379324 3381984
## 52    3586265    2777701    3764967 3271334 3278291 3285567
## 53    3512282    2702090    3690233 3196161 3210275 3220413
## 54    3472761    2628328    3635326 3131827 3152369 3164874
## 55    4348770    3448955    4487975 3968465 3898049 3865123
## 56    4079336    3231757    4240525 3736141 3692615 3675675
## 57    3667344    2764595    3805360 3284977 3289305 3295802
## 58    3720529    2871915    3881267 3376591 3372182 3374848
## 59    3586242    2768822    3760880 3264851 3271550 3279004
## 60    3512319    2693159    3686165 3189662 3203792 3214213
## 61    3472342    2619415    3631207 3125311 3146100 3158972
filter(test_btv_pre_roll3, Date >= '2019-05-01')
##          Date     REQ   weekday month isHolyday  m1_fit m1_cnf_lwr
## 1  2019-05-01 3616125 Wednesday    05         0 3006488    2818096
## 2  2019-05-02 2955011  Thursday    05         0 2901835    2713319
## 3  2019-05-03 2907704    Friday    05         0 2870009    2673210
## 4  2019-05-04 3236108  Saturday    05         0 3570458    3348141
## 5  2019-05-05 3036148    Sunday    05         1 3269726    2860513
## 6  2019-05-06 3660025    Monday    05         1 3690200    3277719
## 7  2019-05-07 2868780   Tuesday    05         0 2982781    2772528
## 8  2019-05-08 2703155 Wednesday    05         0 2986413    2796487
## 9  2019-05-09 2747889  Thursday    05         0 2881690    2691607
## 10 2019-05-10 2807466    Friday    05         0 2849793    2651702
## 11 2019-05-11 3451599  Saturday    05         0 3550172    3326644
## 12 2019-05-12 3482948    Sunday    05         1 3249370    2840156
## 13 2019-05-13 2890072    Monday    05         0 2999994    2757674
## 14 2019-05-14 2775220   Tuesday    05         0 2962283    2750477
## 15 2019-05-15 2806413 Wednesday    05         0 2965844    2774077
## 16 2019-05-16 2800079  Thursday    05         0 2861050    2669092
## 17 2019-05-17 2819470    Friday    05         0 2829083    2629403
## 18 2019-05-18 3544076  Saturday    05         0 3529391    3304385
## 19 2019-05-19 3722838    Sunday    05         0 3508866    3260035
## 20 2019-05-20 2884655    Monday    05         0 2979072    2735158
## 21 2019-05-21 2742861   Tuesday    05         0 2941290    2727641
## 22 2019-05-22 2691009 Wednesday    05         0 2944781    2750852
## 23 2019-05-23 2695802  Thursday    05         0 2839916    2645759
## 24 2019-05-24 2752395    Friday    05         0 2807879    2606296
## 25 2019-05-25 3354832  Saturday    05         0 3508116    3281347
## 26 2019-05-26 3359779    Sunday    05         0 3487520    3236409
## 27 2019-05-27 3006505    Monday    05         0 2957656    2711878
## 28 2019-05-28 2680322   Tuesday    05         0 2919803    2704003
## 29 2019-05-29 2682910 Wednesday    05         0 2923222    2726796
## 30 2019-05-30 2642520  Thursday    05         0 2818287    2621594
## 31 2019-05-31 2618025    Friday    05         0 2786179    2582366
## 32 2019-06-01      NA  Saturday    06         0 3441481    3146587
## 33 2019-06-02      NA    Sunday    06         0 3366607    3044361
## 34 2019-06-03      NA    Monday    06         0 2782393    2459545
## 35 2019-06-04      NA   Tuesday    06         0 2787854    2464398
## 36 2019-06-05      NA Wednesday    06         0 2665811    2230725
## 37 2019-06-06      NA  Thursday    06         1 3783893    3087435
## 38 2019-06-07      NA    Friday    06         0 2779416    2481444
## 39 2019-06-08      NA  Saturday    06         0 3419215    3120553
## 40 2019-06-09      NA    Sunday    06         0 3344271    3018552
## 41 2019-06-10      NA    Monday    06         0 2759985    2433621
## 42 2019-06-11      NA   Tuesday    06         0 2765376    2438359
## 43 2019-06-12      NA Wednesday    06         0 2643261    2205437
## 44 2019-06-13      NA  Thursday    06         0 2696619    2368279
## 45 2019-06-14      NA    Friday    06         0 2756725    2454761
## 46 2019-06-15      NA  Saturday    06         0 3396453    3093752
## 47 2019-06-16      NA    Sunday    06         0 3321438    2991990
## 48 2019-06-17      NA    Monday    06         0 2737082    2406943
## 49 2019-06-18      NA   Tuesday    06         0 2742401    2411565
## 50 2019-06-19      NA Wednesday    06         0 2620216    2179443
## 51 2019-06-20      NA  Thursday    06         0 2673502    2341252
## 52 2019-06-21      NA    Friday    06         0 2733538    2427305
## 53 2019-06-22      NA  Saturday    06         0 3373195    3066177
## 54 2019-06-23      NA    Sunday    06         0 3298109    2964668
## 55 2019-06-24      NA    Monday    06         0 2713682    2379503
## 56 2019-06-25      NA   Tuesday    06         0 2718930    2384008
## 57 2019-06-26      NA Wednesday    06         0 2596674    2152735
## 58 2019-06-27      NA  Thursday    06         0 2649890    2313460
## 59 2019-06-28      NA    Friday    06         0 2709854    2399070
## 60 2019-06-29      NA  Saturday    06         0 3349440    3037822
## 61 2019-06-30      NA    Sunday    06         0 3274283    2936577
##    m1_cnf_upr m1_prd_lwr m1_prd_upr  m2_fit  m3_fit  m4_fit
## 1     3194879    2544207    3468768 3006488 2980956 3037399
## 2     3090351    2439525    3364145 2901835 2873765 2946387
## 3     3066809    2405712    3334306 2870009 2850409 2912311
## 4     3792776    3099563    4041354 3570458 3539154 3516246
## 5     3678940    2731354    3808099 3269726 3273133 3268598
## 6     4102682    3150391    4230010 3690200 3669246 3603377
## 7     3193034    2515094    3450469 2982781 2940377 3018634
## 8     3176339    2523770    3449056 2986413 2957552 3023061
## 9     3071772    2419010    3344369 2881690 2850276 2933248
## 10    3047885    2385179    3314408 2849793 2826835 2899575
## 11    3773700    3078946    4021398 3550172 3515495 3493819
## 12    3658583    2710997    3787742 3249370 3249389 3250498
## 13    3242315    2523439    3476550 2999994 2974950 3034724
## 14    3174089    2494191    3430375 2962283 2916463 3004259
## 15    3157611    2502764    3428925 2965844 2933553 3008573
## 16    3053008    2397924    3324176 2861050 2826192 2919961
## 17    3028764    2364077    3294090 2829083 2802666 2886695
## 18    3754398    3057759    4001023 3529391 3491241 3471276
## 19    3757698    3030379    3987354 3508866 3483664 3433415
## 20    3222987    2502048    3456097 2979072 2950526 3019814
## 21    3154940    2472715    3409865 2941290 2891954 2989742
## 22    3138709    2481181    3408380 2944781 2908958 2993944
## 23    3034073    2376261    3303571 2839916 2801513 2906536
## 24    3009461    2342399    3273358 2807879 2777901 2873678
## 25    3734885    3035997    3980235 3508116 3466391 3448633
## 26    3738631    3008346    3966695 3487520 3458729 3411427
## 27    3203433    2480079    3435232 2957656 2925505 3004771
## 28    3135602    2450660    3388946 2919803 2866848 2975093
## 29    3119649    2459017    3387428 2923222 2883768 2979185
## 30    3014980    2354016    3282558 2818287 2776237 2892982
## 31    2989992    2320139    3252219 2786179 2752540 2860532
## 32    3736375    2948124    3934838 3441481 3380332 3345242
## 33    3688854    2863476    3869739 3366607 3305518 3298108
## 34    3105241    2279039    3285747 2782393 2720565 2910698
## 35    3111310    2284275    3291433 2787854 2725462 2914704
## 36    3100896    2115857    3215764 2665811 2600948 2829033
## 37    4480351    3096073    4471712 3783893 3725935 3402525
## 38    3077389    2284993    3273840 2779416 2715224 2909411
## 39    3717877    2924552    3913879 3419215 3354289 3324012
## 40    3669989    2839851    3848690 3344271 3279389 3277693
## 41    3086350    2255325    3264646 2759985 2694351 2896591
## 42    3092392    2260472    3270280 2765376 2699163 2900493
## 43    3081085    2092055    3194467 2643261 2574564 2815992
## 44    3024959    2191219    3202018 2696619 2628620 2853523
## 45    3058690    2260906    3252544 2756725 2688669 2895143
## 46    3699155    2900375    3892531 3396453 3327649 3302714
## 47    3650885    2815623    3827253 3321438 3252664 3257203
## 48    3067220    2231007    3243157 2737082 2667541 2882377
## 49    3073237    2236063    3248739 2742401 2672267 2886177
## 50    3060989    2067656    3172776 2620216 2547583 2802845
## 51    3005753    2166631    3180374 2673502 2601554 2839803
## 52    3039771    2236211    3230865 2733538 2661517 2880773
## 53    3680213    2875589    3870801 3373195 3300412 3281362
## 54    3631550    2790786    3805432 3298109 3225341 3236654
## 55    3047860    2206079    3221284 2713682 2640132 2868063
## 56    3053853    2211045    3226816 2718930 2644774 2871763
## 57    3040613    2042653    3150695 2596674 2520004 2789598
## 58    2986319    2141430    3158349 2649890 2573889 2825986
## 59    3020638    2210901    3208808 2709854 2633767 2866309
## 60    3661059    2850187    3848694 3349440 3272576 3259970
## 61    3611989    2765335    3783231 3274283 3197420 3216057
### 
# 모델 신뢰구간
confint(model1)
##                                            2.5 %        97.5 %
## (Intercept)                        -3.469885e+08  1.236784e+08
## I(as.numeric(Date)^3)              -1.259679e-04  4.164062e-05
## I(as.numeric(Date)^2)              -1.119159e+00  3.349907e+00
## weekdayMonday:month01               1.268842e+05  6.326868e+05
## weekdayTuesday:month01              1.519181e+05  6.505763e+05
## weekdayWednesday:month01            1.029470e+05  5.901752e+05
## weekdayThursday:month01             1.308425e+05  6.248463e+05
## weekdayFriday:month01               7.996563e+04  5.861026e+05
## weekdaySaturday:month01             3.381051e+05  8.441283e+05
## weekdaySunday:month01               3.166464e+05  8.225581e+05
## weekdayMonday:month02              -2.478518e+05  2.705986e+05
## weekdayTuesday:month02             -3.032691e+05  2.150849e+05
## weekdayWednesday:month02           -1.470887e+05  3.711711e+05
## weekdayThursday:month02            -7.998359e+04  4.367486e+05
## weekdayFriday:month02              -1.205115e+05  3.951449e+05
## weekdaySaturday:month02             1.435873e+05  6.592396e+05
## weekdaySunday:month02              -1.184281e+05  3.852537e+05
## weekdayMonday:month03              -7.367679e+05 -2.337347e+05
## weekdayTuesday:month03             -8.120594e+05 -3.090192e+05
## weekdayWednesday:month03           -7.863651e+05 -2.833160e+05
## weekdayThursday:month03            -7.898586e+05 -2.867986e+05
## weekdayFriday:month03              -7.509385e+05 -2.578262e+05
## weekdaySaturday:month03            -4.860050e+04  4.355895e+05
## weekdaySunday:month03              -9.839968e+04  3.950084e+05
## weekdayMonday:month04              -7.914522e+05 -3.059993e+05
## weekdayTuesday:month04             -8.747030e+05 -3.786245e+05
## weekdayWednesday:month04           -8.859579e+05 -3.818090e+05
## weekdayThursday:month04            -8.786747e+05 -3.744543e+05
## weekdayFriday:month04              -8.482379e+05 -3.439434e+05
## weekdaySaturday:month04            -1.781907e+05  3.261803e+05
## weekdaySunday:month04              -1.658081e+05  3.273086e+05
## weekdayMonday:month05              -8.222092e+05 -1.881397e+05
## weekdayTuesday:month05             -7.042797e+05 -1.209807e+05
## weekdayWednesday:month05           -7.985764e+05 -2.482976e+05
## weekdayThursday:month05            -8.728090e+05 -3.225722e+05
## weekdayFriday:month05              -9.527247e+05 -3.694828e+05
## weekdaySaturday:month05            -1.406067e+05  4.935237e+05
## weekdaySunday:month05              -3.465192e+05  2.366405e+05
## weekdayMonday:month06              -9.878358e+05 -4.052308e+05
## weekdayTuesday:month06             -9.787287e+05 -3.961276e+05
## weekdayWednesday:month06           -1.165181e+06 -4.400006e+05
## weekdayThursday:month06            -1.040045e+06 -4.574499e+05
## weekdayFriday:month06              -9.614963e+05 -4.118360e+05
## weekdaySaturday:month06            -3.180148e+05  2.316415e+05
## weekdaySunday:month06              -4.072650e+05  1.753447e+05
## weekdayMonday:month07              -5.870947e+05 -3.737968e+04
## weekdayTuesday:month07             -6.753232e+05 -1.256047e+05
## weekdayWednesday:month07           -7.375985e+05 -1.549443e+05
## weekdayThursday:month07            -7.574637e+05 -1.748059e+05
## weekdayFriday:month07              -7.463423e+05 -1.636811e+05
## weekdaySaturday:month07            -4.248109e+05  1.578537e+05
## weekdaySunday:month07              -3.814277e+05  1.682837e+05
## weekdayMonday:month08              -5.359704e+05  4.664868e+04
## weekdayTuesday:month08             -7.327251e+05 -1.501144e+05
## weekdayWednesday:month08           -6.325750e+05 -4.996685e+04
## weekdayThursday:month08            -6.745376e+05 -1.248638e+05
## weekdayFriday:month08              -5.178712e+05  3.179386e+04
## weekdaySaturday:month08            -4.168458e+05  1.657886e+05
## weekdaySunday:month08              -3.807110e+05  2.019160e+05
## weekdayMonday:month09              -1.112167e+06 -4.787825e+05
## weekdayTuesday:month09             -1.037004e+06 -4.036401e+05
## weekdayWednesday:month09           -1.116428e+06 -4.830858e+05
## weekdayThursday:month09            -1.017346e+06 -4.352596e+05
## weekdayFriday:month09              -9.887969e+05 -4.067373e+05
## weekdaySaturday:month09            -3.946104e+05  1.545351e+05
## weekdaySunday:month09              -5.819094e+05  2.171002e+02
## weekdayMonday:month10              -8.918877e+05 -3.437776e+05
## weekdayTuesday:month10             -9.097817e+05 -3.287553e+05
## weekdayWednesday:month10           -9.203727e+05 -3.394388e+05
## weekdayThursday:month10            -9.287902e+05 -3.476249e+05
## weekdayFriday:month10              -7.653711e+05 -1.842439e+05
## weekdaySaturday:month10            -1.829419e+05  3.981470e+05
## weekdaySunday:month10              -2.648691e+05  3.161813e+05
## weekdayMonday:month11              -7.919543e+05 -2.120056e+05
## weekdayTuesday:month11             -9.087612e+05 -3.288461e+05
## weekdayWednesday:month11           -8.089352e+05 -2.290531e+05
## weekdayThursday:month11            -7.420895e+05 -1.952264e+05
## weekdayFriday:month11              -7.545440e+05 -2.077165e+05
## weekdaySaturday:month11            -1.510222e+05  4.289954e+05
## weekdaySunday:month11              -2.031984e+05  3.767845e+05
## weekdayMonday:month12              -4.162313e+05  1.299751e+05
## weekdayTuesday:month12             -6.458482e+05 -1.512331e+04
## weekdayWednesday:month12           -6.138438e+05 -3.450497e+04
## weekdayThursday:month12            -5.491809e+05  3.015759e+04
## weekdayFriday:month12              -4.636162e+05  1.157238e+05
## weekdaySaturday:month12            -3.117020e+05  2.345044e+05
## weekdaySunday:month12                         NA            NA
## weekdayMonday:isHolyday            -2.400913e+05  6.842176e+05
## weekdayTuesday:isHolyday           -2.431502e+05  6.746868e+05
## weekdayWednesday:isHolyday          3.534231e+05  1.319025e+06
## weekdayThursday:isHolyday           6.275424e+05  1.545671e+06
## weekdayFriday:isHolyday             5.455527e+05  1.457763e+06
## weekdaySaturday:isHolyday          -8.863037e+05  1.110326e+05
## weekdaySunday:isHolyday            -7.401707e+05  2.253976e+05
## weekdayMonday:month02:isHolyday    -1.107694e+06  2.076888e+05
## weekdayTuesday:month02:isHolyday   -1.408049e+06 -1.102273e+05
## weekdayWednesday:month02:isHolyday -1.353262e+06 -1.516952e+04
## weekdayThursday:month02:isHolyday  -2.783733e+06 -1.482989e+06
## weekdayFriday:month02:isHolyday    -3.012963e+06 -1.710304e+06
## weekdaySaturday:month02:isHolyday  -1.777767e+06 -4.174307e+05
## weekdaySunday:month02:isHolyday               NA            NA
## weekdayMonday:month03:isHolyday               NA            NA
## weekdayTuesday:month03:isHolyday              NA            NA
## weekdayWednesday:month03:isHolyday            NA            NA
## weekdayThursday:month03:isHolyday             NA            NA
## weekdayFriday:month03:isHolyday               NA            NA
## weekdaySaturday:month03:isHolyday             NA            NA
## weekdaySunday:month03:isHolyday               NA            NA
## weekdayMonday:month04:isHolyday               NA            NA
## weekdayTuesday:month04:isHolyday              NA            NA
## weekdayWednesday:month04:isHolyday            NA            NA
## weekdayThursday:month04:isHolyday             NA            NA
## weekdayFriday:month04:isHolyday               NA            NA
## weekdaySaturday:month04:isHolyday             NA            NA
## weekdaySunday:month04:isHolyday               NA            NA
## weekdayMonday:month05:isHolyday    -2.630468e+05  1.095470e+06
## weekdayTuesday:month05:isHolyday    7.705845e+04  1.408493e+06
## weekdayWednesday:month05:isHolyday            NA            NA
## weekdayThursday:month05:isHolyday             NA            NA
## weekdayFriday:month05:isHolyday               NA            NA
## weekdaySaturday:month05:isHolyday             NA            NA
## weekdaySunday:month05:isHolyday               NA            NA
## weekdayMonday:month06:isHolyday               NA            NA
## weekdayTuesday:month06:isHolyday              NA            NA
## weekdayWednesday:month06:isHolyday -2.992962e+05  9.962453e+05
## weekdayThursday:month06:isHolyday             NA            NA
## weekdayFriday:month06:isHolyday               NA            NA
## weekdaySaturday:month06:isHolyday             NA            NA
## weekdaySunday:month06:isHolyday               NA            NA
## weekdayMonday:month07:isHolyday               NA            NA
## weekdayTuesday:month07:isHolyday              NA            NA
## weekdayWednesday:month07:isHolyday            NA            NA
## weekdayThursday:month07:isHolyday             NA            NA
## weekdayFriday:month07:isHolyday               NA            NA
## weekdaySaturday:month07:isHolyday             NA            NA
## weekdaySunday:month07:isHolyday               NA            NA
## weekdayMonday:month08:isHolyday               NA            NA
## weekdayTuesday:month08:isHolyday              NA            NA
## weekdayWednesday:month08:isHolyday -8.701177e+05  4.954202e+05
## weekdayThursday:month08:isHolyday             NA            NA
## weekdayFriday:month08:isHolyday               NA            NA
## weekdaySaturday:month08:isHolyday             NA            NA
## weekdaySunday:month08:isHolyday               NA            NA
## weekdayMonday:month09:isHolyday    -1.319498e+06  4.028265e+04
## weekdayTuesday:month09:isHolyday   -9.826464e+05  3.726364e+05
## weekdayWednesday:month09:isHolyday -9.054644e+05  4.826826e+05
## weekdayThursday:month09:isHolyday             NA            NA
## weekdayFriday:month09:isHolyday               NA            NA
## weekdaySaturday:month09:isHolyday             NA            NA
## weekdaySunday:month09:isHolyday               NA            NA
## weekdayMonday:month10:isHolyday               NA            NA
## weekdayTuesday:month10:isHolyday    1.634807e+05  1.495516e+06
## weekdayWednesday:month10:isHolyday            NA            NA
## weekdayThursday:month10:isHolyday             NA            NA
## weekdayFriday:month10:isHolyday               NA            NA
## weekdaySaturday:month10:isHolyday             NA            NA
## weekdaySunday:month10:isHolyday               NA            NA
## weekdayMonday:month11:isHolyday               NA            NA
## weekdayTuesday:month11:isHolyday              NA            NA
## weekdayWednesday:month11:isHolyday            NA            NA
## weekdayThursday:month11:isHolyday             NA            NA
## weekdayFriday:month11:isHolyday               NA            NA
## weekdaySaturday:month11:isHolyday             NA            NA
## weekdaySunday:month11:isHolyday               NA            NA
## weekdayMonday:month12:isHolyday               NA            NA
## weekdayTuesday:month12:isHolyday   -7.998234e+04  1.276224e+06
## weekdayWednesday:month12:isHolyday            NA            NA
## weekdayThursday:month12:isHolyday             NA            NA
## weekdayFriday:month12:isHolyday               NA            NA
## weekdaySaturday:month12:isHolyday             NA            NA
## weekdaySunday:month12:isHolyday               NA            NA
confint(model2, level = 0.99)
## Waiting for profiling to be done...
##                                            0.5 %        99.5 %
## (Intercept)                        -4.199427e+08  1.966327e+08
## I(as.numeric(Date)^3)              -1.519475e-04  6.762024e-05
## I(as.numeric(Date)^2)              -1.811872e+00  4.042621e+00
## weekdayMonday:month01               4.848389e+04  7.110872e+05
## weekdayTuesday:month01              7.462519e+04  7.278692e+05
## weekdayWednesday:month01            2.742568e+04  6.656965e+05
## weekdayThursday:month01             5.427100e+04  7.014178e+05
## weekdayFriday:month01               1.513458e+03  6.645548e+05
## weekdaySaturday:month01             2.596706e+05  9.225628e+05
## weekdaySunday:month01               2.382291e+05  9.009754e+05
## weekdayMonday:month02              -3.282126e+05  3.509594e+05
## weekdayTuesday:month02             -3.836150e+05  2.954307e+05
## weekdayWednesday:month02           -2.274200e+05  4.515023e+05
## weekdayThursday:month02            -1.600780e+05  5.168431e+05
## weekdayFriday:month02              -2.004392e+05  4.750726e+05
## weekdaySaturday:month02             6.366026e+04  7.391666e+05
## weekdaySunday:month02              -1.964997e+05  4.633253e+05
## weekdayMonday:month03              -8.147390e+05 -1.557636e+05
## weekdayTuesday:month03             -8.900315e+05 -2.310470e+05
## weekdayWednesday:month03           -8.643386e+05 -2.053424e+05
## weekdayThursday:month03            -8.678338e+05 -2.088234e+05
## weekdayFriday:month03              -8.273719e+05 -1.813929e+05
## weekdaySaturday:month03            -1.236509e+05  5.106399e+05
## weekdaySunday:month03              -1.748788e+05  4.714875e+05
## weekdayMonday:month04              -8.666983e+05 -2.307532e+05
## weekdayTuesday:month04             -9.515960e+05 -3.017314e+05
## weekdayWednesday:month04           -9.641018e+05 -3.036650e+05
## weekdayThursday:month04            -9.568298e+05 -2.962992e+05
## weekdayFriday:month04              -9.264045e+05 -2.657768e+05
## weekdaySaturday:month04            -2.563691e+05  4.043588e+05
## weekdaySunday:month04              -2.422421e+05  4.037425e+05
## weekdayMonday:month05              -9.204912e+05 -8.985775e+04
## weekdayTuesday:month05             -7.946921e+05 -3.056833e+04
## weekdayWednesday:month05           -8.838706e+05 -1.630034e+05
## weekdayThursday:month05            -9.580968e+05 -2.372844e+05
## weekdayFriday:month05              -1.043128e+06 -2.790792e+05
## weekdaySaturday:month05            -2.388981e+05  5.918151e+05
## weekdaySunday:month05              -4.369100e+05  3.270314e+05
## weekdayMonday:month06              -1.078141e+06 -3.149259e+05
## weekdayTuesday:month06             -1.069033e+06 -3.058234e+05
## weekdayWednesday:month06           -1.277585e+06 -3.275963e+05
## weekdayThursday:month06            -1.130348e+06 -3.671466e+05
## weekdayFriday:month06              -1.046695e+06 -3.266376e+05
## weekdaySaturday:month06            -4.032125e+05  3.168392e+05
## weekdaySunday:month06              -4.975705e+05  2.656503e+05
## weekdayMonday:month07              -6.723016e+05  4.782716e+04
## weekdayTuesday:month07             -7.605306e+05 -4.039733e+04
## weekdayWednesday:month07           -8.279110e+05 -6.463180e+04
## weekdayThursday:month07            -8.477767e+05 -8.449286e+04
## weekdayFriday:month07              -8.366559e+05 -7.336749e+04
## weekdaySaturday:month07            -5.151250e+05  2.481678e+05
## weekdaySunday:month07              -4.666340e+05  2.534900e+05
## weekdayMonday:month08              -6.262775e+05  1.369557e+05
## weekdayTuesday:month08             -8.230308e+05 -5.980871e+04
## weekdayWednesday:month08           -7.228803e+05  4.033848e+04
## weekdayThursday:month08            -7.597380e+05 -3.966336e+04
## weekdayFriday:month08              -6.030703e+05  1.169930e+05
## weekdaySaturday:month08            -5.071552e+05  2.560981e+05
## weekdaySunday:month08              -4.710193e+05  2.922243e+05
## weekdayMonday:month09              -1.210343e+06 -3.806067e+05
## weekdayTuesday:month09             -1.135176e+06 -3.054676e+05
## weekdayWednesday:month09           -1.214597e+06 -3.849166e+05
## weekdayThursday:month09            -1.107570e+06 -3.450352e+05
## weekdayFriday:month09              -1.079017e+06 -3.165170e+05
## weekdaySaturday:month09            -4.797290e+05  2.396536e+05
## weekdaySunday:month09              -6.721401e+05  9.044778e+04
## weekdayMonday:month10              -9.768458e+05 -2.588195e+05
## weekdayTuesday:month10             -9.998419e+05 -2.386952e+05
## weekdayWednesday:month10           -1.010419e+06 -2.493930e+05
## weekdayThursday:month10            -1.018872e+06 -2.575432e+05
## weekdayFriday:month10              -8.554469e+05 -9.416817e+04
## weekdaySaturday:month10            -2.730117e+05  4.882168e+05
## weekdaySunday:month10              -3.549329e+05  4.062452e+05
## weekdayMonday:month11              -8.818474e+05 -1.221125e+05
## weekdayTuesday:month11             -9.986492e+05 -2.389582e+05
## weekdayWednesday:month11           -8.988180e+05 -1.391703e+05
## weekdayThursday:month11            -8.268543e+05 -1.104616e+05
## weekdayFriday:month11              -8.393032e+05 -1.229572e+05
## weekdaySaturday:month11            -2.409259e+05  5.188991e+05
## weekdaySunday:month11              -2.930968e+05  4.666829e+05
## weekdayMonday:month12              -5.008943e+05  2.146381e+05
## weekdayTuesday:month12             -7.436117e+05  8.264021e+04
## weekdayWednesday:month12           -7.036423e+05  5.529361e+04
## weekdayThursday:month12            -6.389795e+05  1.199561e+05
## weekdayFriday:month12              -5.534149e+05  2.055226e+05
## weekdaySaturday:month12            -3.963650e+05  3.191674e+05
## weekdaySunday:month12                         NA            NA
## weekdayMonday:isHolyday            -3.833608e+05  8.274872e+05
## weekdayTuesday:isHolyday           -3.854167e+05  8.169532e+05
## weekdayWednesday:isHolyday          2.037531e+05  1.468695e+06
## weekdayThursday:isHolyday           4.852307e+05  1.687983e+06
## weekdayFriday:isHolyday             4.041585e+05  1.599157e+06
## weekdaySaturday:isHolyday          -1.040893e+06  2.656216e+05
## weekdaySunday:isHolyday            -8.898355e+05  3.750624e+05
## weekdayMonday:month02:isHolyday    -1.311581e+06  4.115756e+05
## weekdayTuesday:month02:isHolyday   -1.609214e+06  9.093742e+04
## weekdayWednesday:month02:isHolyday -1.560669e+06  1.922373e+05
## weekdayThursday:month02:isHolyday  -2.985351e+06 -1.281371e+06
## weekdayFriday:month02:isHolyday    -3.214877e+06 -1.508390e+06
## weekdaySaturday:month02:isHolyday  -1.988622e+06 -2.065761e+05
## weekdaySunday:month02:isHolyday               NA            NA
## weekdayMonday:month03:isHolyday               NA            NA
## weekdayTuesday:month03:isHolyday              NA            NA
## weekdayWednesday:month03:isHolyday            NA            NA
## weekdayThursday:month03:isHolyday             NA            NA
## weekdayFriday:month03:isHolyday               NA            NA
## weekdaySaturday:month03:isHolyday             NA            NA
## weekdaySunday:month03:isHolyday               NA            NA
## weekdayMonday:month04:isHolyday               NA            NA
## weekdayTuesday:month04:isHolyday              NA            NA
## weekdayWednesday:month04:isHolyday            NA            NA
## weekdayThursday:month04:isHolyday             NA            NA
## weekdayFriday:month04:isHolyday               NA            NA
## weekdaySaturday:month04:isHolyday             NA            NA
## weekdaySunday:month04:isHolyday               NA            NA
## weekdayMonday:month05:isHolyday    -4.736194e+05  1.306043e+06
## weekdayTuesday:month05:isHolyday   -1.293164e+05  1.614868e+06
## weekdayWednesday:month05:isHolyday            NA            NA
## weekdayThursday:month05:isHolyday             NA            NA
## weekdayFriday:month05:isHolyday               NA            NA
## weekdaySaturday:month05:isHolyday             NA            NA
## weekdaySunday:month05:isHolyday               NA            NA
## weekdayMonday:month06:isHolyday               NA            NA
## weekdayTuesday:month06:isHolyday              NA            NA
## weekdayWednesday:month06:isHolyday -5.001075e+05  1.197057e+06
## weekdayThursday:month06:isHolyday             NA            NA
## weekdayFriday:month06:isHolyday               NA            NA
## weekdaySaturday:month06:isHolyday             NA            NA
## weekdaySunday:month06:isHolyday               NA            NA
## weekdayMonday:month07:isHolyday               NA            NA
## weekdayTuesday:month07:isHolyday              NA            NA
## weekdayWednesday:month07:isHolyday            NA            NA
## weekdayThursday:month07:isHolyday             NA            NA
## weekdayFriday:month07:isHolyday               NA            NA
## weekdaySaturday:month07:isHolyday             NA            NA
## weekdaySunday:month07:isHolyday               NA            NA
## weekdayMonday:month08:isHolyday               NA            NA
## weekdayTuesday:month08:isHolyday              NA            NA
## weekdayWednesday:month08:isHolyday -1.081779e+06  7.070811e+05
## weekdayThursday:month08:isHolyday             NA            NA
## weekdayFriday:month08:isHolyday               NA            NA
## weekdaySaturday:month08:isHolyday             NA            NA
## weekdaySunday:month08:isHolyday               NA            NA
## weekdayMonday:month09:isHolyday    -1.530267e+06  2.510512e+05
## weekdayTuesday:month09:isHolyday   -1.192718e+06  5.827077e+05
## weekdayWednesday:month09:isHolyday -1.120630e+06  6.978479e+05
## weekdayThursday:month09:isHolyday             NA            NA
## weekdayFriday:month09:isHolyday               NA            NA
## weekdaySaturday:month09:isHolyday             NA            NA
## weekdaySunday:month09:isHolyday               NA            NA
## weekdayMonday:month10:isHolyday               NA            NA
## weekdayTuesday:month10:isHolyday   -4.298717e+04  1.701984e+06
## weekdayWednesday:month10:isHolyday            NA            NA
## weekdayThursday:month10:isHolyday             NA            NA
## weekdayFriday:month10:isHolyday               NA            NA
## weekdaySaturday:month10:isHolyday             NA            NA
## weekdaySunday:month10:isHolyday               NA            NA
## weekdayMonday:month11:isHolyday               NA            NA
## weekdayTuesday:month11:isHolyday              NA            NA
## weekdayWednesday:month11:isHolyday            NA            NA
## weekdayThursday:month11:isHolyday             NA            NA
## weekdayFriday:month11:isHolyday               NA            NA
## weekdaySaturday:month11:isHolyday             NA            NA
## weekdaySunday:month11:isHolyday               NA            NA
## weekdayMonday:month12:isHolyday               NA            NA
## weekdayTuesday:month12:isHolyday   -2.901967e+05  1.486438e+06
## weekdayWednesday:month12:isHolyday            NA            NA
## weekdayThursday:month12:isHolyday             NA            NA
## weekdayFriday:month12:isHolyday               NA            NA
## weekdaySaturday:month12:isHolyday             NA            NA
## weekdaySunday:month12:isHolyday               NA            NA
confint(model3, level = 0.99)
## Waiting for profiling to be done...
##                                            0.5 %        99.5 %
## (Intercept)                        -7.739625e-06  3.409380e-05
## I(as.numeric(Date)^3)              -2.783310e-18  1.212907e-17
## I(as.numeric(Date)^2)              -3.227123e-13  7.477420e-14
## weekdayMonday:month01              -4.514521e-08 -1.900320e-09
## weekdayTuesday:month01             -4.606463e-08 -3.415087e-09
## weekdayWednesday:month01           -4.272606e-08 -7.944815e-10
## weekdayThursday:month01            -4.465730e-08 -2.287857e-09
## weekdayFriday:month01              -4.268991e-08  7.322840e-10
## weekdaySaturday:month01            -5.569067e-08 -1.306906e-08
## weekdaySunday:month01              -5.465876e-08 -1.198406e-08
## weekdayMonday:month02              -2.459174e-08  2.110411e-08
## weekdayTuesday:month02             -2.108656e-08  2.486077e-08
## weekdayWednesday:month02           -3.068629e-08  1.455030e-08
## weekdayThursday:month02            -3.467662e-08  1.024752e-08
## weekdayFriday:month02              -3.215288e-08  1.283921e-08
## weekdaySaturday:month02            -4.674538e-08 -2.789223e-09
## weekdaySunday:month02              -3.139404e-08  1.256937e-08
## weekdayMonday:month03               1.171152e-08  5.861035e-08
## weekdayTuesday:month03              1.804108e-08  6.540106e-08
## weekdayWednesday:month03            1.585530e-08  6.305830e-08
## weekdayThursday:month03             1.615543e-08  6.338265e-08
## weekdayFriday:month03               1.375380e-08  5.960855e-08
## weekdaySaturday:month03            -3.420783e-08  7.962398e-09
## weekdaySunday:month03              -3.207969e-08  1.104244e-08
## weekdayMonday:month04               1.814930e-08  6.344358e-08
## weekdayTuesday:month04              2.453929e-08  7.150050e-08
## weekdayWednesday:month04            2.462831e-08  7.260752e-08
## weekdayThursday:month04             2.397222e-08  7.191020e-08
## weekdayFriday:month04               2.125915e-08  6.900443e-08
## weekdaySaturday:month04            -2.804521e-08  1.626241e-08
## weekdaySunday:month04              -2.786231e-08  1.540735e-08
## weekdayMonday:month05               7.045353e-09  6.775721e-08
## weekdayTuesday:month05              2.383206e-09  5.689443e-08
## weekdayWednesday:month05            1.255543e-08  6.461342e-08
## weekdayThursday:month05             1.862528e-08  7.131906e-08
## weekdayFriday:month05               2.224812e-08  7.921520e-08
## weekdaySaturday:month05            -3.716409e-08  1.705280e-08
## weekdaySunday:month05              -2.178910e-08  2.982547e-08
## weekdayMonday:month06               2.564568e-08  8.301687e-08
## weekdayTuesday:month06              2.485757e-08  8.213006e-08
## weekdayWednesday:month06            2.761804e-08  1.028952e-07
## weekdayThursday:month06             3.033214e-08  8.829934e-08
## weekdayFriday:month06               2.654273e-08  8.006059e-08
## weekdaySaturday:month06            -2.092596e-08  2.771424e-08
## weekdaySunday:month06              -1.774857e-08  3.431929e-08
## weekdayMonday:month07              -2.918269e-09  4.756178e-08
## weekdayTuesday:month07              3.534576e-09  5.467692e-08
## weekdayWednesday:month07            5.404654e-09  6.029793e-08
## weekdayThursday:month07             6.930947e-09  6.201325e-08
## weekdayFriday:month07               6.082388e-09  6.106221e-08
## weekdaySaturday:month07            -1.648375e-08  3.578027e-08
## weekdaySunday:month07              -1.682117e-08  3.226152e-08
## weekdayMonday:month08              -9.043453e-09  4.414906e-08
## weekdayTuesday:month08              5.182114e-09  6.010020e-08
## weekdayWednesday:month08           -2.256168e-09  5.175079e-08
## weekdayThursday:month08             3.597823e-09  5.478368e-08
## weekdayFriday:month08              -7.683347e-09  4.235205e-08
## weekdaySaturday:month08            -1.695459e-08  3.529508e-08
## weekdaySunday:month08              -1.925812e-08  3.272138e-08
## weekdayMonday:month09               3.253657e-08  9.733042e-08
## weekdayTuesday:month09              2.569296e-08  8.941911e-08
## weekdayWednesday:month09            3.295237e-08  9.781473e-08
## weekdayThursday:month09             2.901698e-08  8.693816e-08
## weekdayFriday:month09               2.645911e-08  8.405613e-08
## weekdaySaturday:month09            -1.592548e-08  3.328601e-08
## weekdaySunday:month09              -5.812939e-09  4.778610e-08
## weekdayMonday:month10               2.136373e-08  7.440834e-08
## weekdayTuesday:month10              1.976253e-08  7.652399e-08
## weekdayWednesday:month10            2.068754e-08  7.756741e-08
## weekdayThursday:month10             2.137877e-08  7.834338e-08
## weekdayFriday:month10               7.906901e-09  6.318761e-08
## weekdaySaturday:month10            -3.138178e-08  1.919243e-08
## weekdaySunday:month10              -2.654904e-08  2.458548e-08
## weekdayMonday:month11               1.008272e-08  6.565813e-08
## weekdayTuesday:month11              1.981725e-08  7.661665e-08
## weekdayWednesday:month11            1.145886e-08  6.720976e-08
## weekdayThursday:month11             9.068201e-09  6.080682e-08
## weekdayFriday:month11               1.006462e-08  6.190891e-08
## weekdaySaturday:month11            -3.344682e-08  1.689068e-08
## weekdaySunday:month11              -3.042628e-08  2.026199e-08
## weekdayMonday:month12              -1.494330e-08  3.440097e-08
## weekdayTuesday:month12             -5.606823e-09  5.355211e-08
## weekdayWednesday:month12           -3.708578e-09  5.026848e-08
## weekdayThursday:month12            -8.384990e-09  4.502763e-08
## weekdayFriday:month12              -1.432852e-08  3.837166e-08
## weekdaySaturday:month12            -2.175835e-08  2.689232e-08
## weekdaySunday:month12                         NA            NA
## weekdayMonday:isHolyday            -4.565266e-08  2.507963e-08
## weekdayTuesday:isHolyday           -4.466077e-08  2.618509e-08
## weekdayWednesday:isHolyday         -1.023150e-07 -1.710748e-08
## weekdayThursday:isHolyday          -1.063742e-07 -3.291248e-08
## weekdayFriday:isHolyday            -1.035362e-07 -2.868522e-08
## weekdaySaturday:isHolyday          -1.882764e-08  7.096829e-08
## weekdaySunday:isHolyday            -2.615505e-08  7.096688e-08
## weekdayMonday:month02:isHolyday    -2.801644e-08  8.464698e-08
## weekdayTuesday:month02:isHolyday   -4.644580e-09  1.141200e-07
## weekdayWednesday:month02:isHolyday -6.050017e-09  1.093755e-07
## weekdayThursday:month02:isHolyday   9.133726e-08  2.156658e-07
## weekdayFriday:month02:isHolyday     1.215976e-07  2.570493e-07
## weekdaySaturday:month02:isHolyday   2.442878e-08  1.642049e-07
## weekdaySunday:month02:isHolyday               NA            NA
## weekdayMonday:month03:isHolyday               NA            NA
## weekdayTuesday:month03:isHolyday              NA            NA
## weekdayWednesday:month03:isHolyday            NA            NA
## weekdayThursday:month03:isHolyday             NA            NA
## weekdayFriday:month03:isHolyday               NA            NA
## weekdaySaturday:month03:isHolyday             NA            NA
## weekdaySunday:month03:isHolyday               NA            NA
## weekdayMonday:month04:isHolyday               NA            NA
## weekdayTuesday:month04:isHolyday              NA            NA
## weekdayWednesday:month04:isHolyday            NA            NA
## weekdayThursday:month04:isHolyday             NA            NA
## weekdayFriday:month04:isHolyday               NA            NA
## weekdaySaturday:month04:isHolyday             NA            NA
## weekdaySunday:month04:isHolyday               NA            NA
## weekdayMonday:month05:isHolyday    -8.966103e-08  2.340397e-08
## weekdayTuesday:month05:isHolyday   -1.016376e-07  4.050339e-09
## weekdayWednesday:month05:isHolyday            NA            NA
## weekdayThursday:month05:isHolyday             NA            NA
## weekdayFriday:month05:isHolyday               NA            NA
## weekdaySaturday:month05:isHolyday             NA            NA
## weekdaySunday:month05:isHolyday               NA            NA
## weekdayMonday:month06:isHolyday               NA            NA
## weekdayTuesday:month06:isHolyday              NA            NA
## weekdayWednesday:month06:isHolyday -8.516214e-08  3.345773e-08
## weekdayThursday:month06:isHolyday             NA            NA
## weekdayFriday:month06:isHolyday               NA            NA
## weekdaySaturday:month06:isHolyday             NA            NA
## weekdaySunday:month06:isHolyday               NA            NA
## weekdayMonday:month07:isHolyday               NA            NA
## weekdayTuesday:month07:isHolyday              NA            NA
## weekdayWednesday:month07:isHolyday            NA            NA
## weekdayThursday:month07:isHolyday             NA            NA
## weekdayFriday:month07:isHolyday               NA            NA
## weekdaySaturday:month07:isHolyday             NA            NA
## weekdaySunday:month07:isHolyday               NA            NA
## weekdayMonday:month08:isHolyday               NA            NA
## weekdayTuesday:month08:isHolyday              NA            NA
## weekdayWednesday:month08:isHolyday -4.012300e-08  7.776659e-08
## weekdayThursday:month08:isHolyday             NA            NA
## weekdayFriday:month08:isHolyday               NA            NA
## weekdaySaturday:month08:isHolyday             NA            NA
## weekdaySunday:month08:isHolyday               NA            NA
## weekdayMonday:month09:isHolyday    -9.363671e-09  1.321042e-07
## weekdayTuesday:month09:isHolyday   -4.491088e-08  8.550365e-08
## weekdayWednesday:month09:isHolyday -5.589533e-08  7.284226e-08
## weekdayThursday:month09:isHolyday             NA            NA
## weekdayFriday:month09:isHolyday               NA            NA
## weekdaySaturday:month09:isHolyday             NA            NA
## weekdaySunday:month09:isHolyday               NA            NA
## weekdayMonday:month10:isHolyday               NA            NA
## weekdayTuesday:month10:isHolyday   -1.156194e-07 -7.157231e-09
## weekdayWednesday:month10:isHolyday            NA            NA
## weekdayThursday:month10:isHolyday             NA            NA
## weekdayFriday:month10:isHolyday               NA            NA
## weekdaySaturday:month10:isHolyday             NA            NA
## weekdaySunday:month10:isHolyday               NA            NA
## weekdayMonday:month11:isHolyday               NA            NA
## weekdayTuesday:month11:isHolyday              NA            NA
## weekdayWednesday:month11:isHolyday            NA            NA
## weekdayThursday:month11:isHolyday             NA            NA
## weekdayFriday:month11:isHolyday               NA            NA
## weekdaySaturday:month11:isHolyday             NA            NA
## weekdaySunday:month11:isHolyday               NA            NA
## weekdayMonday:month12:isHolyday               NA            NA
## weekdayTuesday:month12:isHolyday   -9.622219e-08  1.349108e-08
## weekdayWednesday:month12:isHolyday            NA            NA
## weekdayThursday:month12:isHolyday             NA            NA
## weekdayFriday:month12:isHolyday               NA            NA
## weekdaySaturday:month12:isHolyday             NA            NA
## weekdaySunday:month12:isHolyday               NA            NA
confint(model4, level = 0.99)
## Waiting for profiling to be done...
##                                            0.5 %        99.5 %
## (Intercept)                        -2.987200e-12  1.893455e-11
## I(as.numeric(Date)^3)              -1.054917e-24  6.763298e-24
## I(as.numeric(Date)^2)              -1.799500e-19  2.840999e-20
## weekdayMonday:month01              -2.288675e-14 -6.171788e-16
## weekdayTuesday:month01             -2.331982e-14 -1.352046e-15
## weekdayWednesday:month01           -2.177027e-14 -1.144361e-16
## weekdayThursday:month01            -2.266942e-14 -8.190397e-16
## weekdayFriday:month01              -2.176036e-14  6.315071e-16
## weekdaySaturday:month01            -2.759229e-14 -5.768391e-15
## weekdaySunday:month01              -2.714148e-14 -5.278767e-15
## weekdayMonday:month02              -1.306333e-14  1.079520e-14
## weekdayTuesday:month02             -1.130362e-14  1.275463e-14
## weekdayWednesday:month02           -1.606035e-14  7.447242e-15
## weekdayThursday:month02            -1.803600e-14  5.266633e-15
## weekdayFriday:month02              -1.679552e-14  6.581699e-15
## weekdaySaturday:month02            -2.364873e-14 -1.041822e-15
## weekdaySunday:month02              -1.640758e-14  6.438667e-15
## weekdayMonday:month03               6.413790e-15  3.167925e-14
## weekdayTuesday:month03              1.008592e-14  3.575575e-14
## weekdayWednesday:month03            8.810472e-15  3.434162e-14
## weekdayThursday:month03             8.986722e-15  3.453888e-14
## weekdayFriday:month03               7.569190e-15  3.224404e-14
## weekdaySaturday:month03            -1.776649e-14  4.122569e-15
## weekdaySunday:month03              -1.678330e-14  5.635231e-15
## weekdayMonday:month04               1.019137e-14  3.462755e-14
## weekdayTuesday:month04              1.403148e-14  3.959533e-14
## weekdayWednesday:month04            1.405234e-14  4.024223e-14
## weekdayThursday:month04             1.366041e-14  3.981098e-14
## weekdayFriday:month04               1.204182e-14  3.801721e-14
## weekdaySaturday:month04            -1.479046e-14  8.294448e-15
## weekdaySunday:month04              -1.466212e-14  7.870864e-15
## weekdayMonday:month05               3.841020e-15  3.695707e-14
## weekdayTuesday:month05              1.239267e-15  3.059379e-14
## weekdayWednesday:month05            6.885376e-15  3.512653e-14
## weekdayThursday:month05             1.035878e-14  3.915001e-14
## weekdayFriday:month05               1.249188e-14  4.395259e-14
## weekdaySaturday:month05            -1.873333e-14  9.173594e-15
## weekdaySunday:month05              -1.133620e-14  1.567414e-14
## weekdayMonday:month06               1.454917e-14  4.637991e-14
## weekdayTuesday:month06              1.408322e-14  4.582690e-14
## weekdayWednesday:month06            1.594411e-14  5.882432e-14
## weekdayThursday:month06             1.736175e-14  4.972135e-14
## weekdayFriday:month06               1.504902e-14  4.457652e-14
## weekdaySaturday:month06            -1.084611e-14  1.460408e-14
## weekdaySunday:month06              -9.268216e-15  1.811120e-14
## weekdayMonday:month07              -1.532118e-15  2.539338e-14
## weekdayTuesday:month07              1.958496e-15  2.943421e-14
## weekdayWednesday:month07            2.993026e-15  3.268143e-14
## weekdayThursday:month07             3.839490e-15  3.368741e-14
## weekdayFriday:month07               3.370111e-15  3.313130e-14
## weekdaySaturday:month07            -8.594343e-15  1.893886e-14
## weekdaySunday:month07              -8.760217e-15  1.703637e-14
## weekdayMonday:month08              -4.750498e-15  2.353049e-14
## weekdayTuesday:month08              2.902356e-15  3.261306e-14
## weekdayWednesday:month08           -1.153213e-15  2.779619e-14
## weekdayThursday:month08             2.019529e-15  2.953313e-14
## weekdayFriday:month08              -4.036308e-15  2.252643e-14
## weekdaySaturday:month08            -8.824368e-15  1.869811e-14
## weekdaySunday:month08              -9.986258e-15  1.732230e-14
## weekdayMonday:month09               1.892608e-14  5.562327e-14
## weekdayTuesday:month09              1.477723e-14  5.052351e-14
## weekdayWednesday:month09            1.918506e-14  5.594525e-14
## weekdayThursday:month09             1.671767e-14  4.905279e-14
## weekdayFriday:month09               1.518101e-14  4.722876e-14
## weekdaySaturday:month09            -8.307221e-15  1.760544e-14
## weekdaySunday:month09              -3.048233e-15  2.557840e-14
## weekdayMonday:month10               1.215597e-14  4.131663e-14
## weekdayTuesday:month10              1.124761e-14  4.259326e-14
## weekdayWednesday:month10            1.179358e-14  4.324606e-14
## weekdayThursday:month10             1.219505e-14  4.371439e-14
## weekdayFriday:month10               4.443034e-15  3.450614e-14
## weekdaySaturday:month10            -1.601329e-14  1.023732e-14
## weekdaySunday:month10              -1.367121e-14  1.301213e-14
## weekdayMonday:month11               5.672803e-15  3.602383e-14
## weekdayTuesday:month11              1.130404e-14  4.271889e-14
## weekdayWednesday:month11            6.456893e-15  3.696090e-14
## weekdayThursday:month11             5.080580e-15  3.314734e-14
## weekdayFriday:month11               5.644447e-15  3.380289e-14
## weekdaySaturday:month11            -1.708443e-14  9.008004e-15
## weekdaySunday:month11              -1.563497e-14  1.072696e-14
## weekdayMonday:month12              -7.966194e-15  1.812687e-14
## weekdayTuesday:month12             -3.015437e-15  2.889053e-14
## weekdayWednesday:month12           -2.005495e-15  2.701134e-14
## weekdayThursday:month12            -4.520161e-15  2.402930e-14
## weekdayFriday:month12              -7.651338e-15  2.031624e-14
## weekdaySaturday:month12            -1.144411e-14  1.409498e-14
## weekdaySunday:month12                         NA            NA
## weekdayMonday:isHolyday            -2.150176e-14  1.291901e-14
## weekdayTuesday:isHolyday           -2.087589e-14  1.373926e-14
## weekdayWednesday:isHolyday         -5.466689e-14 -9.787137e-15
## weekdayThursday:isHolyday          -5.414451e-14 -1.725126e-14
## weekdayFriday:isHolyday            -5.318918e-14 -1.526751e-14
## weekdaySaturday:isHolyday          -1.010426e-14  3.733962e-14
## weekdaySunday:isHolyday            -1.395287e-14  4.022964e-14
## weekdayMonday:month02:isHolyday    -1.474357e-14  4.374884e-14
## weekdayTuesday:month02:isHolyday   -2.115780e-15  6.213530e-14
## weekdayWednesday:month02:isHolyday -1.436635e-15  5.851031e-14
## weekdayThursday:month02:isHolyday   4.911411e-14  1.182160e-13
## weekdayFriday:month02:isHolyday     7.011860e-14  1.494469e-13
## weekdaySaturday:month02:isHolyday   1.631876e-14  9.648223e-14
## weekdaySunday:month02:isHolyday               NA            NA
## weekdayMonday:month03:isHolyday               NA            NA
## weekdayTuesday:month03:isHolyday              NA            NA
## weekdayWednesday:month03:isHolyday            NA            NA
## weekdayThursday:month03:isHolyday             NA            NA
## weekdayFriday:month03:isHolyday               NA            NA
## weekdaySaturday:month03:isHolyday             NA            NA
## weekdaySunday:month03:isHolyday               NA            NA
## weekdayMonday:month04:isHolyday               NA            NA
## weekdayTuesday:month04:isHolyday              NA            NA
## weekdayWednesday:month04:isHolyday            NA            NA
## weekdayThursday:month04:isHolyday             NA            NA
## weekdayFriday:month04:isHolyday               NA            NA
## weekdaySaturday:month04:isHolyday             NA            NA
## weekdaySunday:month04:isHolyday               NA            NA
## weekdayMonday:month05:isHolyday    -4.730555e-14  1.050214e-14
## weekdayTuesday:month05:isHolyday   -5.149029e-14  1.211132e-15
## weekdayWednesday:month05:isHolyday            NA            NA
## weekdayThursday:month05:isHolyday             NA            NA
## weekdayFriday:month05:isHolyday               NA            NA
## weekdaySaturday:month05:isHolyday             NA            NA
## weekdaySunday:month05:isHolyday               NA            NA
## weekdayMonday:month06:isHolyday               NA            NA
## weekdayTuesday:month06:isHolyday              NA            NA
## weekdayWednesday:month06:isHolyday -4.643820e-14  1.756649e-14
## weekdayThursday:month06:isHolyday             NA            NA
## weekdayFriday:month06:isHolyday               NA            NA
## weekdaySaturday:month06:isHolyday             NA            NA
## weekdaySunday:month06:isHolyday               NA            NA
## weekdayMonday:month07:isHolyday               NA            NA
## weekdayTuesday:month07:isHolyday              NA            NA
## weekdayWednesday:month07:isHolyday            NA            NA
## weekdayThursday:month07:isHolyday             NA            NA
## weekdayFriday:month07:isHolyday               NA            NA
## weekdaySaturday:month07:isHolyday             NA            NA
## weekdaySunday:month07:isHolyday               NA            NA
## weekdayMonday:month08:isHolyday               NA            NA
## weekdayTuesday:month08:isHolyday              NA            NA
## weekdayWednesday:month08:isHolyday -1.908904e-14  4.224377e-14
## weekdayThursday:month08:isHolyday             NA            NA
## weekdayFriday:month08:isHolyday               NA            NA
## weekdaySaturday:month08:isHolyday             NA            NA
## weekdaySunday:month08:isHolyday               NA            NA
## weekdayMonday:month09:isHolyday    -1.813809e-15  8.131655e-14
## weekdayTuesday:month09:isHolyday   -2.521855e-14  4.738789e-14
## weekdayWednesday:month09:isHolyday -3.214018e-14  3.736768e-14
## weekdayThursday:month09:isHolyday             NA            NA
## weekdayFriday:month09:isHolyday               NA            NA
## weekdaySaturday:month09:isHolyday             NA            NA
## weekdaySunday:month09:isHolyday               NA            NA
## weekdayMonday:month10:isHolyday               NA            NA
## weekdayTuesday:month10:isHolyday   -6.097182e-14 -6.021432e-15
## weekdayWednesday:month10:isHolyday            NA            NA
## weekdayThursday:month10:isHolyday             NA            NA
## weekdayFriday:month10:isHolyday               NA            NA
## weekdaySaturday:month10:isHolyday             NA            NA
## weekdaySunday:month10:isHolyday               NA            NA
## weekdayMonday:month11:isHolyday               NA            NA
## weekdayTuesday:month11:isHolyday              NA            NA
## weekdayWednesday:month11:isHolyday            NA            NA
## weekdayThursday:month11:isHolyday             NA            NA
## weekdayFriday:month11:isHolyday               NA            NA
## weekdaySaturday:month11:isHolyday             NA            NA
## weekdaySunday:month11:isHolyday               NA            NA
## weekdayMonday:month12:isHolyday               NA            NA
## weekdayTuesday:month12:isHolyday   -4.936094e-14  5.863299e-15
## weekdayWednesday:month12:isHolyday            NA            NA
## weekdayThursday:month12:isHolyday             NA            NA
## weekdayFriday:month12:isHolyday               NA            NA
## weekdaySaturday:month12:isHolyday             NA            NA
## weekdaySunday:month12:isHolyday               NA            NA
confint(model1_2, level = 0.99)
##                                            0.5 %        99.5 %
## (Intercept)                        -7.348625e+08 -2.802958e+08
## I(as.numeric(Date)^3)              -2.642670e-04 -1.028087e-04
## I(as.numeric(Date)^2)               2.727230e+00  7.035960e+00
## weekdayMonday:month01               1.151060e+05  7.883310e+05
## weekdayTuesday:month01              1.489019e+05  8.115215e+05
## weekdayWednesday:month01            9.489390e+04  7.429890e+05
## weekdayThursday:month01             1.193388e+05  7.768555e+05
## weekdayFriday:month01               6.880570e+04  7.424000e+05
## weekdaySaturday:month01             3.267314e+05  1.000201e+06
## weekdaySunday:month01               3.050666e+05  9.784126e+05
## weekdayMonday:month02              -2.625198e+05  4.278485e+05
## weekdayTuesday:month02             -3.181015e+05  3.721579e+05
## weekdayWednesday:month02           -1.620778e+05  5.280746e+05
## weekdayThursday:month02            -9.067253e+04  5.969186e+05
## weekdayFriday:month02              -1.366849e+05  5.501356e+05
## weekdaySaturday:month02             1.276092e+05  8.144012e+05
## weekdaySunday:month02              -1.326815e+05  5.380161e+05
## weekdayMonday:month03              -7.474567e+05 -7.805909e+04
## weekdayTuesday:month03             -8.225095e+05 -1.531325e+05
## weekdayWednesday:month03           -7.965687e+05 -1.272108e+05
## weekdayThursday:month03            -7.998080e+05 -1.304676e+05
## weekdayFriday:month03              -7.616666e+05 -1.054344e+05
## weekdaySaturday:month03            -5.547942e+04  5.884133e+05
## weekdaySunday:month03              -9.979415e+04  5.556015e+05
## weekdayMonday:month04              -7.874028e+05 -1.433464e+05
## weekdayTuesday:month04             -8.605123e+05 -2.039118e+05
## weekdayWednesday:month04           -8.860925e+05 -2.166123e+05
## weekdayThursday:month04            -8.783358e+05 -2.088272e+05
## weekdayFriday:month04              -8.474176e+05 -1.778787e+05
## weekdaySaturday:month04            -1.768809e+05  4.926900e+05
## weekdaySunday:month04              -1.702070e+05  4.852115e+05
## weekdayMonday:month05              -9.395202e+05 -2.274662e+05
## weekdayTuesday:month05             -9.542739e+05 -2.822182e+05
## weekdayWednesday:month05           -9.346546e+05 -2.887780e+05
## weekdayThursday:month05            -1.036516e+06 -3.905466e+05
## weekdayFriday:month05              -1.072419e+06 -4.126002e+05
## weekdaySaturday:month05            -3.846288e+05  3.062235e+05
## weekdaySunday:month05              -4.108700e+05  2.974332e+05
## weekdayMonday:month06              -1.126576e+06 -3.471110e+05
## weekdayTuesday:month06             -1.117927e+06 -3.384969e+05
## weekdayWednesday:month06           -1.332361e+06 -3.617885e+05
## weekdayThursday:month06            -1.180136e+06 -4.007742e+05
## weekdayFriday:month06              -1.094691e+06 -3.594621e+05
## weekdaySaturday:month06            -4.516628e+05  2.835293e+05
## weekdaySunday:month06              -5.455408e+05  2.339611e+05
## weekdayMonday:month07              -7.309493e+05  3.509269e+03
## weekdayTuesday:month07             -8.194055e+05 -8.496249e+04
## weekdayWednesday:month07           -8.868958e+05 -1.081485e+05
## weekdayThursday:month07            -9.070002e+05 -1.282680e+05
## weekdayFriday:month07              -8.961107e+05 -1.173932e+05
## weekdaySaturday:month07            -5.748039e+05  2.038992e+05
## weekdaySunday:month07              -5.250473e+05  2.094272e+05
## weekdayMonday:month08              -6.893213e+05  8.903185e+04
## weekdayTuesday:month08             -8.860750e+05 -1.077330e+05
## weekdayWednesday:month08           -7.856891e+05 -7.329767e+03
## weekdayThursday:month08            -8.220770e+05 -8.800931e+04
## weekdayFriday:month08              -6.654132e+05  6.864269e+04
## weekdaySaturday:month08            -5.701767e+05  2.081985e+05
## weekdaySunday:month08              -5.340555e+05  2.443087e+05
## weekdayMonday:month09              -1.272281e+06 -4.255302e+05
## weekdayTuesday:month09             -1.196937e+06 -3.501998e+05
## weekdayWednesday:month09           -1.276173e+06 -4.294497e+05
## weekdayThursday:month09            -1.167263e+06 -3.893211e+05
## weekdayFriday:month09              -1.138485e+06 -3.605601e+05
## weekdaySaturday:month09            -5.390492e+05  1.946008e+05
## weekdaySunday:month09              -7.321438e+05  4.582473e+04
## weekdayMonday:month10              -1.026588e+06 -2.935358e+05
## weekdayTuesday:month10             -1.048876e+06 -2.715418e+05
## weekdayWednesday:month10           -1.058351e+06 -2.810676e+05
## weekdayThursday:month10            -1.069504e+06 -2.920920e+05
## weekdayFriday:month10              -9.056477e+05 -1.282571e+05
## weekdaySaturday:month10            -3.227739e+05  4.545954e+05
## weekdaySunday:month10              -4.042490e+05  3.730990e+05
## weekdayMonday:month11              -9.149183e+05 -1.381796e+05
## weekdayTuesday:month11             -1.031044e+06 -2.543241e+05
## weekdayWednesday:month11           -9.305292e+05 -1.538275e+05
## weekdayThursday:month11            -8.596096e+05 -1.272476e+05
## weekdayFriday:month11              -8.713871e+05 -1.390450e+05
## weekdaySaturday:month11            -2.753251e+05  5.014517e+05
## weekdaySunday:month11              -3.268357e+05  4.499219e+05
## weekdayMonday:month12              -5.082049e+05  2.237909e+05
## weekdayTuesday:month12             -7.578495e+05  8.739776e+04
## weekdayWednesday:month12           -7.129716e+05  6.342691e+04
## weekdayThursday:month12            -6.473915e+05  1.290068e+05
## weekdayFriday:month12              -5.609016e+05  2.154975e+05
## weekdaySaturday:month12            -4.055101e+05  3.264857e+05
## weekdaySunday:month12                         NA            NA
## weekdayMonday:isHolyday            -3.296636e+05  9.068931e+05
## weekdayTuesday:isHolyday           -4.619423e+05  7.661083e+05
## weekdayWednesday:isHolyday          1.816168e+05  1.475637e+06
## weekdayThursday:isHolyday           4.495687e+05  1.679739e+06
## weekdayFriday:isHolyday             4.096274e+05  1.631925e+06
## weekdaySaturday:isHolyday          -8.087916e+05  4.346494e+05
## weekdaySunday:isHolyday            -9.026416e+05  3.913597e+05
## weekdayMonday:month02:isHolyday    -1.413037e+06  3.474427e+05
## weekdayTuesday:month02:isHolyday   -1.579436e+06  1.589942e+05
## weekdayWednesday:month02:isHolyday -1.586526e+06  2.067012e+05
## weekdayThursday:month02:isHolyday  -2.988074e+06 -1.244984e+06
## weekdayFriday:month02:isHolyday    -3.254691e+06 -1.509113e+06
## weekdaySaturday:month02:isHolyday  -2.178665e+06 -4.230358e+05
## weekdaySunday:month02:isHolyday               NA            NA
## weekdayMonday:month03:isHolyday               NA            NA
## weekdayTuesday:month03:isHolyday              NA            NA
## weekdayWednesday:month03:isHolyday            NA            NA
## weekdayThursday:month03:isHolyday             NA            NA
## weekdayFriday:month03:isHolyday               NA            NA
## weekdaySaturday:month03:isHolyday             NA            NA
## weekdaySunday:month03:isHolyday               NA            NA
## weekdayMonday:month04:isHolyday               NA            NA
## weekdayTuesday:month04:isHolyday              NA            NA
## weekdayWednesday:month04:isHolyday            NA            NA
## weekdayThursday:month04:isHolyday             NA            NA
## weekdayFriday:month04:isHolyday               NA            NA
## weekdaySaturday:month04:isHolyday             NA            NA
## weekdaySunday:month04:isHolyday               NA            NA
## weekdayMonday:month05:isHolyday    -3.971751e+05  1.159502e+06
## weekdayTuesday:month05:isHolyday    1.167514e+05  1.852869e+06
## weekdayWednesday:month05:isHolyday            NA            NA
## weekdayThursday:month05:isHolyday             NA            NA
## weekdayFriday:month05:isHolyday               NA            NA
## weekdaySaturday:month05:isHolyday             NA            NA
## weekdaySunday:month05:isHolyday    -8.286980e+05  7.792834e+05
## weekdayMonday:month06:isHolyday               NA            NA
## weekdayTuesday:month06:isHolyday              NA            NA
## weekdayWednesday:month06:isHolyday -5.055325e+05  1.230613e+06
## weekdayThursday:month06:isHolyday             NA            NA
## weekdayFriday:month06:isHolyday               NA            NA
## weekdaySaturday:month06:isHolyday             NA            NA
## weekdaySunday:month06:isHolyday               NA            NA
## weekdayMonday:month07:isHolyday               NA            NA
## weekdayTuesday:month07:isHolyday              NA            NA
## weekdayWednesday:month07:isHolyday            NA            NA
## weekdayThursday:month07:isHolyday             NA            NA
## weekdayFriday:month07:isHolyday               NA            NA
## weekdaySaturday:month07:isHolyday             NA            NA
## weekdaySunday:month07:isHolyday               NA            NA
## weekdayMonday:month08:isHolyday               NA            NA
## weekdayTuesday:month08:isHolyday              NA            NA
## weekdayWednesday:month08:isHolyday -1.095214e+06  7.347889e+05
## weekdayThursday:month08:isHolyday             NA            NA
## weekdayFriday:month08:isHolyday               NA            NA
## weekdaySaturday:month08:isHolyday             NA            NA
## weekdaySunday:month08:isHolyday               NA            NA
## weekdayMonday:month09:isHolyday    -1.613503e+06  2.074763e+05
## weekdayTuesday:month09:isHolyday   -1.145463e+06  6.693271e+05
## weekdayWednesday:month09:isHolyday -1.130576e+06  7.297037e+05
## weekdayThursday:month09:isHolyday             NA            NA
## weekdayFriday:month09:isHolyday               NA            NA
## weekdaySaturday:month09:isHolyday             NA            NA
## weekdaySunday:month09:isHolyday               NA            NA
## weekdayMonday:month10:isHolyday               NA            NA
## weekdayTuesday:month10:isHolyday   -2.978267e+03  1.780952e+06
## weekdayWednesday:month10:isHolyday            NA            NA
## weekdayThursday:month10:isHolyday             NA            NA
## weekdayFriday:month10:isHolyday               NA            NA
## weekdaySaturday:month10:isHolyday             NA            NA
## weekdaySunday:month10:isHolyday               NA            NA
## weekdayMonday:month11:isHolyday               NA            NA
## weekdayTuesday:month11:isHolyday              NA            NA
## weekdayWednesday:month11:isHolyday            NA            NA
## weekdayThursday:month11:isHolyday             NA            NA
## weekdayFriday:month11:isHolyday               NA            NA
## weekdaySaturday:month11:isHolyday             NA            NA
## weekdaySunday:month11:isHolyday               NA            NA
## weekdayMonday:month12:isHolyday               NA            NA
## weekdayTuesday:month12:isHolyday   -2.330462e+05  1.582519e+06
## weekdayWednesday:month12:isHolyday            NA            NA
## weekdayThursday:month12:isHolyday             NA            NA
## weekdayFriday:month12:isHolyday               NA            NA
## weekdaySaturday:month12:isHolyday             NA            NA
## weekdaySunday:month12:isHolyday               NA            NA
confint(model2_2, level = 0.99)
## Waiting for profiling to be done...
##                                            0.5 %        99.5 %
## (Intercept)                        -7.337969e+08 -2.813614e+08
## I(as.numeric(Date)^3)              -2.638885e-04 -1.031872e-04
## I(as.numeric(Date)^2)               2.737330e+00  7.025860e+00
## weekdayMonday:month01               1.166842e+05  7.867528e+05
## weekdayTuesday:month01              1.504552e+05  8.099682e+05
## weekdayWednesday:month01            9.641317e+04  7.414697e+05
## weekdayThursday:month01             1.208802e+05  7.753142e+05
## weekdayFriday:month01               7.038475e+04  7.408210e+05
## weekdaySaturday:month01             3.283102e+05  9.986218e+05
## weekdaySunday:month01               3.066451e+05  9.768341e+05
## weekdayMonday:month02              -2.609014e+05  4.262301e+05
## weekdayTuesday:month02             -3.164834e+05  3.705398e+05
## weekdayWednesday:month02           -1.604600e+05  5.264567e+05
## weekdayThursday:month02            -8.906067e+04  5.953067e+05
## weekdayFriday:month02              -1.350749e+05  5.485255e+05
## weekdaySaturday:month02             1.292192e+05  8.127912e+05
## weekdaySunday:month02              -1.311092e+05  5.364438e+05
## weekdayMonday:month03              -7.458875e+05 -7.962831e+04
## weekdayTuesday:month03             -8.209403e+05 -1.547017e+05
## weekdayWednesday:month03           -7.949996e+05 -1.287799e+05
## weekdayThursday:month03            -7.982390e+05 -1.320367e+05
## weekdayFriday:month03              -7.601283e+05 -1.069727e+05
## weekdaySaturday:month03            -5.397000e+04  5.869039e+05
## weekdaySunday:month03              -9.825776e+04  5.540651e+05
## weekdayMonday:month04              -7.858930e+05 -1.448562e+05
## weekdayTuesday:month04             -8.589730e+05 -2.054510e+05
## weekdayWednesday:month04           -8.845231e+05 -2.181817e+05
## weekdayThursday:month04            -8.767664e+05 -2.103967e+05
## weekdayFriday:month04              -8.458480e+05 -1.794482e+05
## weekdaySaturday:month04            -1.753113e+05  4.911203e+05
## weekdaySunday:month04              -1.686705e+05  4.836750e+05
## weekdayMonday:month05              -9.378510e+05 -2.291354e+05
## weekdayTuesday:month05             -9.526985e+05 -2.837936e+05
## weekdayWednesday:month05           -9.331405e+05 -2.902920e+05
## weekdayThursday:month05            -1.035002e+06 -3.920608e+05
## weekdayFriday:month05              -1.070872e+06 -4.141470e+05
## weekdaySaturday:month05            -3.830093e+05  3.046040e+05
## weekdaySunday:month05              -4.092096e+05  2.957727e+05
## weekdayMonday:month06              -1.124749e+06 -3.489383e+05
## weekdayTuesday:month06             -1.116100e+06 -3.403241e+05
## weekdayWednesday:month06           -1.330085e+06 -3.640637e+05
## weekdayThursday:month06            -1.178309e+06 -4.026012e+05
## weekdayFriday:month06              -1.092968e+06 -3.611856e+05
## weekdaySaturday:month06            -4.499393e+05  2.818059e+05
## weekdaySunday:month06              -5.437135e+05  2.321337e+05
## weekdayMonday:month07              -7.292276e+05  1.787540e+03
## weekdayTuesday:month07             -8.176838e+05 -8.668418e+04
## weekdayWednesday:month07           -8.850703e+05 -1.099741e+05
## weekdayThursday:month07            -9.051747e+05 -1.300935e+05
## weekdayFriday:month07              -8.942852e+05 -1.192187e+05
## weekdaySaturday:month07            -5.729784e+05  2.020738e+05
## weekdaySunday:month07              -5.233255e+05  2.077054e+05
## weekdayMonday:month08              -6.874967e+05  8.720722e+04
## weekdayTuesday:month08             -8.842504e+05 -1.095576e+05
## weekdayWednesday:month08           -7.838645e+05 -9.154409e+03
## weekdayThursday:month08            -8.203562e+05 -8.973012e+04
## weekdayFriday:month08              -6.636924e+05  6.692190e+04
## weekdaySaturday:month08            -5.683520e+05  2.063739e+05
## weekdaySunday:month08              -5.322309e+05  2.424840e+05
## weekdayMonday:month09              -1.270296e+06 -4.275152e+05
## weekdayTuesday:month09             -1.194952e+06 -3.521847e+05
## weekdayWednesday:month09           -1.274188e+06 -4.314346e+05
## weekdayThursday:month09            -1.165439e+06 -3.911448e+05
## weekdayFriday:month09              -1.136662e+06 -3.623838e+05
## weekdaySaturday:month09            -5.373293e+05  1.928810e+05
## weekdaySunday:month09              -7.303201e+05  4.400100e+04
## weekdayMonday:month10              -1.024870e+06 -2.952543e+05
## weekdayTuesday:month10             -1.047054e+06 -2.733641e+05
## weekdayWednesday:month10           -1.056529e+06 -2.828897e+05
## weekdayThursday:month10            -1.067681e+06 -2.939144e+05
## weekdayFriday:month10              -9.038253e+05 -1.300794e+05
## weekdaySaturday:month10            -3.209516e+05  4.527731e+05
## weekdaySunday:month10              -4.024267e+05  3.712767e+05
## weekdayMonday:month11              -9.130975e+05 -1.400005e+05
## weekdayTuesday:month11             -1.029223e+06 -2.561449e+05
## weekdayWednesday:month11           -9.287085e+05 -1.556483e+05
## weekdayThursday:month11            -8.578927e+05 -1.289644e+05
## weekdayFriday:month11              -8.696704e+05 -1.407617e+05
## weekdaySaturday:month11            -2.735042e+05  4.996308e+05
## weekdaySunday:month11              -3.250148e+05  4.481010e+05
## weekdayMonday:month12              -5.064890e+05  2.220749e+05
## weekdayTuesday:month12             -7.558681e+05  8.541632e+04
## weekdayWednesday:month12           -7.111515e+05  6.160687e+04
## weekdayThursday:month12            -6.455715e+05  1.271867e+05
## weekdayFriday:month12              -5.590815e+05  2.136775e+05
## weekdaySaturday:month12            -4.037942e+05  3.247697e+05
## weekdaySunday:month12                         NA            NA
## weekdayMonday:isHolyday            -3.267649e+05  9.039944e+05
## weekdayTuesday:isHolyday           -4.590635e+05  7.632295e+05
## weekdayWednesday:isHolyday          1.846502e+05  1.472603e+06
## weekdayThursday:isHolyday           4.524525e+05  1.676855e+06
## weekdayFriday:isHolyday             4.124927e+05  1.629060e+06
## weekdaySaturday:isHolyday          -8.058767e+05  4.317345e+05
## weekdaySunday:isHolyday            -8.996082e+05  3.883263e+05
## weekdayMonday:month02:isHolyday    -1.408910e+06  3.433158e+05
## weekdayTuesday:month02:isHolyday   -1.575361e+06  1.549189e+05
## weekdayWednesday:month02:isHolyday -1.582322e+06  2.024975e+05
## weekdayThursday:month02:isHolyday  -2.983988e+06 -1.249070e+06
## weekdayFriday:month02:isHolyday    -3.250599e+06 -1.513205e+06
## weekdaySaturday:month02:isHolyday  -2.174549e+06 -4.271514e+05
## weekdaySunday:month02:isHolyday               NA            NA
## weekdayMonday:month03:isHolyday               NA            NA
## weekdayTuesday:month03:isHolyday              NA            NA
## weekdayWednesday:month03:isHolyday            NA            NA
## weekdayThursday:month03:isHolyday             NA            NA
## weekdayFriday:month03:isHolyday               NA            NA
## weekdaySaturday:month03:isHolyday             NA            NA
## weekdaySunday:month03:isHolyday               NA            NA
## weekdayMonday:month04:isHolyday               NA            NA
## weekdayTuesday:month04:isHolyday              NA            NA
## weekdayWednesday:month04:isHolyday            NA            NA
## weekdayThursday:month04:isHolyday             NA            NA
## weekdayFriday:month04:isHolyday               NA            NA
## weekdaySaturday:month04:isHolyday             NA            NA
## weekdaySunday:month04:isHolyday               NA            NA
## weekdayMonday:month05:isHolyday    -3.935259e+05  1.155853e+06
## weekdayTuesday:month05:isHolyday    1.208213e+05  1.848800e+06
## weekdayWednesday:month05:isHolyday            NA            NA
## weekdayThursday:month05:isHolyday             NA            NA
## weekdayFriday:month05:isHolyday               NA            NA
## weekdaySaturday:month05:isHolyday             NA            NA
## weekdaySunday:month05:isHolyday    -8.249286e+05  7.755140e+05
## weekdayMonday:month06:isHolyday               NA            NA
## weekdayTuesday:month06:isHolyday              NA            NA
## weekdayWednesday:month06:isHolyday -5.014626e+05  1.226543e+06
## weekdayThursday:month06:isHolyday             NA            NA
## weekdayFriday:month06:isHolyday               NA            NA
## weekdaySaturday:month06:isHolyday             NA            NA
## weekdaySunday:month06:isHolyday               NA            NA
## weekdayMonday:month07:isHolyday               NA            NA
## weekdayTuesday:month07:isHolyday              NA            NA
## weekdayWednesday:month07:isHolyday            NA            NA
## weekdayThursday:month07:isHolyday             NA            NA
## weekdayFriday:month07:isHolyday               NA            NA
## weekdaySaturday:month07:isHolyday             NA            NA
## weekdaySunday:month07:isHolyday               NA            NA
## weekdayMonday:month08:isHolyday               NA            NA
## weekdayTuesday:month08:isHolyday              NA            NA
## weekdayWednesday:month08:isHolyday -1.090925e+06  7.304989e+05
## weekdayThursday:month08:isHolyday             NA            NA
## weekdayFriday:month08:isHolyday               NA            NA
## weekdaySaturday:month08:isHolyday             NA            NA
## weekdaySunday:month08:isHolyday               NA            NA
## weekdayMonday:month09:isHolyday    -1.609235e+06  2.032075e+05
## weekdayTuesday:month09:isHolyday   -1.141209e+06  6.650728e+05
## weekdayWednesday:month09:isHolyday -1.126215e+06  7.253428e+05
## weekdayThursday:month09:isHolyday             NA            NA
## weekdayFriday:month09:isHolyday               NA            NA
## weekdaySaturday:month09:isHolyday             NA            NA
## weekdaySunday:month09:isHolyday               NA            NA
## weekdayMonday:month10:isHolyday               NA            NA
## weekdayTuesday:month10:isHolyday    1.203650e+03  1.776770e+06
## weekdayWednesday:month10:isHolyday            NA            NA
## weekdayThursday:month10:isHolyday             NA            NA
## weekdayFriday:month10:isHolyday               NA            NA
## weekdaySaturday:month10:isHolyday             NA            NA
## weekdaySunday:month10:isHolyday               NA            NA
## weekdayMonday:month11:isHolyday               NA            NA
## weekdayTuesday:month11:isHolyday              NA            NA
## weekdayWednesday:month11:isHolyday            NA            NA
## weekdayThursday:month11:isHolyday             NA            NA
## weekdayFriday:month11:isHolyday               NA            NA
## weekdaySaturday:month11:isHolyday             NA            NA
## weekdaySunday:month11:isHolyday               NA            NA
## weekdayMonday:month12:isHolyday               NA            NA
## weekdayTuesday:month12:isHolyday   -2.287901e+05  1.578263e+06
## weekdayWednesday:month12:isHolyday            NA            NA
## weekdayThursday:month12:isHolyday             NA            NA
## weekdayFriday:month12:isHolyday               NA            NA
## weekdaySaturday:month12:isHolyday             NA            NA
## weekdaySunday:month12:isHolyday               NA            NA
confint(model3_2, level = 0.99)
## Waiting for profiling to be done...
##                                            0.5 %        99.5 %
## (Intercept)                        -8.400104e+08 -3.869234e+08
## I(as.numeric(Date)^3)              -3.015263e-04 -1.408301e-04
## I(as.numeric(Date)^2)               3.740589e+00  8.031071e+00
## weekdayMonday:month01               1.113733e+05  8.382384e+05
## weekdayTuesday:month01              1.481356e+05  8.643837e+05
## weekdayWednesday:month01            9.357838e+04  7.884040e+05
## weekdayThursday:month01             1.151334e+05  8.229120e+05
## weekdayFriday:month01               6.703842e+04  7.922342e+05
## weekdaySaturday:month01             3.159186e+05  1.056581e+06
## weekdaySunday:month01               2.946563e+05  1.033203e+06
## weekdayMonday:month02              -2.498932e+05  4.660874e+05
## weekdayTuesday:month02             -3.011490e+05  4.100738e+05
## weekdayWednesday:month02           -1.554529e+05  5.680143e+05
## weekdayThursday:month02            -8.728276e+04  6.376418e+05
## weekdayFriday:month02              -1.328936e+05  5.881497e+05
## weekdaySaturday:month02             1.220810e+05  8.633671e+05
## weekdaySunday:month02              -1.236700e+05  5.790056e+05
## weekdayMonday:month03              -7.265998e+05 -6.491921e+04
## weekdayTuesday:month03             -7.994100e+05 -1.423896e+05
## weekdayWednesday:month03           -7.739485e+05 -1.153607e+05
## weekdayThursday:month03            -7.804679e+05 -1.219802e+05
## weekdayFriday:month03              -7.433277e+05 -9.277015e+04
## weekdaySaturday:month03            -5.030940e+04  6.266122e+05
## weekdaySunday:month03              -9.123388e+04  5.951490e+05
## weekdayMonday:month04              -7.674014e+05 -1.304138e+05
## weekdayTuesday:month04             -8.339835e+05 -1.915318e+05
## weekdayWednesday:month04           -8.604304e+05 -2.081974e+05
## weekdayThursday:month04            -8.510472e+05 -1.981990e+05
## weekdayFriday:month04              -8.215339e+05 -1.668895e+05
## weekdaySaturday:month04            -1.728233e+05  5.239100e+05
## weekdaySunday:month04              -1.593448e+05  5.238237e+05
## weekdayMonday:month05              -9.060091e+05 -2.253617e+05
## weekdayTuesday:month05             -9.463679e+05 -2.989376e+05
## weekdayWednesday:month05           -9.181458e+05 -2.879967e+05
## weekdayThursday:month05            -1.019922e+06 -3.944362e+05
## weekdayFriday:month05              -1.043530e+06 -4.101399e+05
## weekdaySaturday:month05            -3.808527e+05  3.181445e+05
## weekdaySunday:month05              -3.957322e+05  3.280824e+05
## weekdayMonday:month06              -1.109843e+06 -3.717067e+05
## weekdayTuesday:month06             -1.101643e+06 -3.625949e+05
## weekdayWednesday:month06           -1.279624e+06 -4.037949e+05
## weekdayThursday:month06            -1.161626e+06 -4.291381e+05
## weekdayFriday:month06              -1.085404e+06 -3.817452e+05
## weekdaySaturday:month06            -4.693461e+05  2.937652e+05
## weekdaySunday:month06              -5.570102e+05  2.444620e+05
## weekdayMonday:month07              -7.414083e+05 -5.396758e+03
## weekdayTuesday:month07             -8.263734e+05 -9.860055e+04
## weekdayWednesday:month07           -8.865681e+05 -1.233851e+05
## weekdayThursday:month07            -9.058034e+05 -1.448154e+05
## weekdayFriday:month07              -8.955695e+05 -1.334202e+05
## weekdaySaturday:month07            -5.903275e+05  2.073938e+05
## weekdaySunday:month07              -5.440555e+05  2.115065e+05
## weekdayMonday:month08              -7.015212e+05  8.250664e+04
## weekdayTuesday:month08             -8.887963e+05 -1.264549e+05
## weekdayWednesday:month08           -7.931704e+05 -1.979275e+04
## weekdayThursday:month08            -8.313780e+05 -1.046080e+05
## weekdayFriday:month08              -6.813113e+05  6.001908e+04
## weekdaySaturday:month08            -5.880503e+05  2.094322e+05
## weekdaySunday:month08              -5.538803e+05  2.476528e+05
## weekdayMonday:month09              -1.246283e+06 -4.697895e+05
## weekdayTuesday:month09             -1.175370e+06 -3.892843e+05
## weekdayWednesday:month09           -1.249971e+06 -4.741367e+05
## weekdayThursday:month09            -1.155993e+06 -4.252557e+05
## weekdayFriday:month09              -1.128601e+06 -3.949449e+05
## weekdaySaturday:month09            -5.599869e+05  1.918438e+05
## weekdaySunday:month09              -7.414740e+05  3.612871e+04
## weekdayMonday:month10              -1.026715e+06 -3.224141e+05
## weekdayTuesday:month10             -1.041230e+06 -3.010689e+05
## weekdayWednesday:month10           -1.049980e+06 -3.110968e+05
## weekdayThursday:month10            -1.061295e+06 -3.229134e+05
## weekdayFriday:month10              -9.050799e+05 -1.493496e+05
## weekdaySaturday:month10            -3.518962e+05  4.689769e+05
## weekdaySunday:month10              -4.283897e+05  3.829953e+05
## weekdayMonday:month11              -9.089806e+05 -1.582095e+05
## weekdayTuesday:month11             -1.020324e+06 -2.820811e+05
## weekdayWednesday:month11           -9.240003e+05 -1.752114e+05
## weekdayThursday:month11            -8.610810e+05 -1.451944e+05
## weekdayFriday:month11              -8.721535e+05 -1.574583e+05
## weekdaySaturday:month11            -3.018152e+05  5.208226e+05
## weekdaySunday:month11              -3.507467e+05  4.657623e+05
## weekdayMonday:month12              -5.158921e+05  2.284569e+05
## weekdayTuesday:month12             -7.487520e+05  8.234255e+04
## weekdayWednesday:month12           -7.095141e+05  5.858383e+04
## weekdayThursday:month12            -6.464482e+05  1.287434e+05
## weekdayFriday:month12              -5.640801e+05  2.205712e+05
## weekdaySaturday:month12            -4.160886e+05  3.384809e+05
## weekdaySunday:month12                         NA            NA
## weekdayMonday:isHolyday            -3.682866e+05  1.124025e+06
## weekdayTuesday:isHolyday           -5.507146e+05  9.213353e+05
## weekdayWednesday:isHolyday          1.927769e+05  1.571245e+06
## weekdayThursday:isHolyday           4.140721e+05  1.858945e+06
## weekdayFriday:isHolyday             3.837275e+05  1.774691e+06
## weekdaySaturday:isHolyday          -7.653746e+05  4.785598e+05
## weekdaySunday:isHolyday            -8.139893e+05  3.777076e+05
## weekdayMonday:month02:isHolyday    -1.567559e+06  3.737232e+05
## weekdayTuesday:month02:isHolyday   -1.648227e+06  1.939710e+05
## weekdayWednesday:month02:isHolyday -1.677185e+06  2.667502e+05
## weekdayThursday:month02:isHolyday  -3.044770e+06 -1.245151e+06
## weekdayFriday:month02:isHolyday    -3.255098e+06 -1.547964e+06
## weekdaySaturday:month02:isHolyday  -2.111424e+06 -4.963138e+05
## weekdaySunday:month02:isHolyday               NA            NA
## weekdayMonday:month03:isHolyday               NA            NA
## weekdayTuesday:month03:isHolyday              NA            NA
## weekdayWednesday:month03:isHolyday            NA            NA
## weekdayThursday:month03:isHolyday             NA            NA
## weekdayFriday:month03:isHolyday               NA            NA
## weekdaySaturday:month03:isHolyday             NA            NA
## weekdaySunday:month03:isHolyday               NA            NA
## weekdayMonday:month04:isHolyday               NA            NA
## weekdayTuesday:month04:isHolyday              NA            NA
## weekdayWednesday:month04:isHolyday            NA            NA
## weekdayThursday:month04:isHolyday             NA            NA
## weekdayFriday:month04:isHolyday               NA            NA
## weekdaySaturday:month04:isHolyday             NA            NA
## weekdaySunday:month04:isHolyday               NA            NA
## weekdayMonday:month05:isHolyday    -5.634754e+05  1.196960e+06
## weekdayTuesday:month05:isHolyday   -1.780456e+04  2.044360e+06
## weekdayWednesday:month05:isHolyday            NA            NA
## weekdayThursday:month05:isHolyday             NA            NA
## weekdayFriday:month05:isHolyday               NA            NA
## weekdaySaturday:month05:isHolyday             NA            NA
## weekdaySunday:month05:isHolyday    -7.561916e+05  7.108993e+05
## weekdayMonday:month06:isHolyday               NA            NA
## weekdayTuesday:month06:isHolyday              NA            NA
## weekdayWednesday:month06:isHolyday -5.633877e+05  1.244116e+06
## weekdayThursday:month06:isHolyday             NA            NA
## weekdayFriday:month06:isHolyday               NA            NA
## weekdaySaturday:month06:isHolyday             NA            NA
## weekdaySunday:month06:isHolyday               NA            NA
## weekdayMonday:month07:isHolyday               NA            NA
## weekdayTuesday:month07:isHolyday              NA            NA
## weekdayWednesday:month07:isHolyday            NA            NA
## weekdayThursday:month07:isHolyday             NA            NA
## weekdayFriday:month07:isHolyday               NA            NA
## weekdaySaturday:month07:isHolyday             NA            NA
## weekdaySunday:month07:isHolyday               NA            NA
## weekdayMonday:month08:isHolyday               NA            NA
## weekdayTuesday:month08:isHolyday              NA            NA
## weekdayWednesday:month08:isHolyday -1.171451e+06  8.178206e+05
## weekdayThursday:month08:isHolyday             NA            NA
## weekdayFriday:month08:isHolyday               NA            NA
## weekdaySaturday:month08:isHolyday             NA            NA
## weekdaySunday:month08:isHolyday               NA            NA
## weekdayMonday:month09:isHolyday    -1.666991e+06  1.379792e+05
## weekdayTuesday:month09:isHolyday   -1.163401e+06  6.913278e+05
## weekdayWednesday:month09:isHolyday -1.152862e+06  7.385143e+05
## weekdayThursday:month09:isHolyday             NA            NA
## weekdayFriday:month09:isHolyday               NA            NA
## weekdaySaturday:month09:isHolyday             NA            NA
## weekdaySunday:month09:isHolyday               NA            NA
## weekdayMonday:month10:isHolyday               NA            NA
## weekdayTuesday:month10:isHolyday   -1.182060e+05  1.947089e+06
## weekdayWednesday:month10:isHolyday            NA            NA
## weekdayThursday:month10:isHolyday             NA            NA
## weekdayFriday:month10:isHolyday               NA            NA
## weekdaySaturday:month10:isHolyday             NA            NA
## weekdaySunday:month10:isHolyday               NA            NA
## weekdayMonday:month11:isHolyday               NA            NA
## weekdayTuesday:month11:isHolyday              NA            NA
## weekdayWednesday:month11:isHolyday            NA            NA
## weekdayThursday:month11:isHolyday             NA            NA
## weekdayFriday:month11:isHolyday               NA            NA
## weekdaySaturday:month11:isHolyday             NA            NA
## weekdaySunday:month11:isHolyday               NA            NA
## weekdayMonday:month12:isHolyday               NA            NA
## weekdayTuesday:month12:isHolyday   -3.486692e+05  1.754654e+06
## weekdayWednesday:month12:isHolyday            NA            NA
## weekdayThursday:month12:isHolyday             NA            NA
## weekdayFriday:month12:isHolyday               NA            NA
## weekdaySaturday:month12:isHolyday             NA            NA
## weekdaySunday:month12:isHolyday               NA            NA
confint(model4_2, level = 0.99)
## Waiting for profiling to be done...
##                                            0.5 %        99.5 %
## (Intercept)                         1.785406e-11  3.581823e-11
## I(as.numeric(Date)^3)               6.400076e-24  1.279514e-23
## I(as.numeric(Date)^2)              -3.406113e-19 -1.700768e-19
## weekdayMonday:month01              -2.679369e-14 -2.889350e-15
## weekdayTuesday:month01             -2.747891e-14 -3.935233e-15
## weekdayWednesday:month01           -2.566342e-14 -2.432417e-15
## weekdayThursday:month01            -2.652038e-14 -3.072107e-15
## weekdayFriday:month01              -2.568479e-14 -1.654758e-15
## weekdaySaturday:month01            -3.148875e-14 -8.078678e-15
## weekdaySunday:month01              -3.103576e-14 -7.580051e-15
## weekdayMonday:month02              -1.698996e-14  8.677796e-15
## weekdayTuesday:month02             -1.522937e-14  1.065579e-14
## weekdayWednesday:month02           -1.995388e-14  5.334703e-15
## weekdayThursday:month02            -2.222463e-14  2.812770e-15
## weekdayFriday:month02              -2.074493e-14  4.394323e-15
## weekdaySaturday:month02            -2.757494e-14 -3.272623e-15
## weekdaySunday:month02              -2.026728e-14  4.302632e-15
## weekdayMonday:month03               2.373888e-15  2.954797e-14
## weekdayTuesday:month03              6.018120e-15  3.362944e-14
## weekdayWednesday:month03            4.744020e-15  3.220327e-14
## weekdayThursday:month03             4.912728e-15  3.239314e-14
## weekdayFriday:month03               3.683684e-15  3.022726e-14
## weekdaySaturday:month03            -2.162478e-14  1.882207e-15
## weekdaySunday:month03              -2.101658e-14  3.029327e-15
## weekdayMonday:month04               5.882258e-15  3.208027e-14
## weekdayTuesday:month04              9.111874e-15  3.647531e-14
## weekdayWednesday:month04            9.681846e-15  3.778956e-14
## weekdayThursday:month04             9.280528e-15  3.734215e-14
## weekdayFriday:month04               7.663420e-15  3.553089e-14
## weekdaySaturday:month04            -1.888512e-14  5.826538e-15
## weekdaySunday:month04              -1.838272e-14  5.775991e-15
## weekdayMonday:month05               1.109885e-14  4.204172e-14
## weekdayTuesday:month05              1.412487e-14  4.295425e-14
## weekdayWednesday:month05            1.441787e-14  4.159503e-14
## weekdayThursday:month05             2.075581e-14  4.860037e-14
## weekdayFriday:month05               2.273492e-14  5.183085e-14
## weekdaySaturday:month05            -1.316326e-14  1.329075e-14
## weekdaySunday:month05              -1.165808e-14  1.521450e-14
## weekdayMonday:month06               1.571402e-14  5.005521e-14
## weekdayTuesday:month06              1.527181e-14  4.951784e-14
## weekdayWednesday:month06            1.692146e-14  6.321140e-14
## weekdayThursday:month06             1.856758e-14  5.347827e-14
## weekdayFriday:month06               1.629626e-14  4.814363e-14
## weekdaySaturday:month06            -9.429268e-15  1.800180e-14
## weekdaySunday:month06              -7.962004e-15  2.156202e-14
## weekdayMonday:month07               2.738486e-16  2.927691e-14
## weekdayTuesday:month07              3.753207e-15  3.335207e-14
## weekdayWednesday:month07            4.694777e-15  3.669304e-14
## weekdayThursday:month07             5.544968e-15  3.771547e-14
## weekdayFriday:month07               5.088025e-15  3.716404e-14
## weekdaySaturday:month07            -6.785780e-15  2.287564e-14
## weekdaySunday:month07              -6.922173e-15  2.085759e-14
## weekdayMonday:month08              -2.874605e-15  2.759146e-14
## weekdayTuesday:month08              4.722977e-15  3.673849e-14
## weekdayWednesday:month08            6.899348e-16  3.188088e-14
## weekdayThursday:month08             3.913117e-15  3.354679e-14
## weekdayFriday:month08              -2.109909e-15  2.649301e-14
## weekdaySaturday:month08            -6.916598e-15  2.272702e-14
## weekdaySunday:month08              -8.072502e-15  2.133933e-14
## weekdayMonday:month09               2.033783e-14  5.992755e-14
## weekdayTuesday:month09              1.621254e-14  5.477382e-14
## weekdayWednesday:month09            2.057092e-14  6.022992e-14
## weekdayThursday:month09             1.819186e-14  5.306339e-14
## weekdayFriday:month09               1.665185e-14  5.121301e-14
## weekdaySaturday:month09            -6.587882e-15  2.132546e-14
## weekdaySunday:month09              -1.415256e-15  2.943935e-14
## weekdayMonday:month10               1.319096e-14  4.465241e-14
## weekdayTuesday:month10              1.213887e-14  4.596820e-14
## weekdayWednesday:month10            1.261798e-14  4.656546e-14
## weekdayThursday:month10             1.316811e-14  4.718170e-14
## weekdayFriday:month10               5.445053e-15  3.788420e-14
## weekdaySaturday:month10            -1.489842e-14  1.341575e-14
## weekdaySunday:month10              -1.259688e-14  1.618698e-14
## weekdayMonday:month11               5.732140e-15  3.851491e-14
## weekdayTuesday:month11              1.128914e-14  4.522261e-14
## weekdayWednesday:month11            6.438767e-15  3.938865e-14
## weekdayThursday:month11             5.228483e-15  3.554077e-14
## weekdayFriday:month11               5.753405e-15  3.616577e-14
## weekdaySaturday:month11            -1.680273e-14  1.137415e-14
## weekdaySunday:month11              -1.539790e-14  1.307146e-14
## weekdayMonday:month12              -9.061127e-15  1.913602e-14
## weekdayTuesday:month12             -4.019990e-15  3.045964e-14
## weekdayWednesday:month12           -3.124901e-15  2.823233e-14
## weekdayThursday:month12            -5.669186e-15  2.518310e-14
## weekdayFriday:month12              -8.826306e-15  2.139724e-14
## weekdaySaturday:month12            -1.242690e-14  1.517164e-14
## weekdaySunday:month12                         NA            NA
## weekdayMonday:isHolyday            -2.535455e-14  1.180633e-14
## weekdayTuesday:isHolyday           -1.947146e-14  1.785753e-14
## weekdayWednesday:isHolyday         -5.594378e-14 -7.428305e-15
## weekdayThursday:isHolyday          -5.407462e-14 -1.422947e-14
## weekdayFriday:isHolyday            -5.608229e-14 -1.511259e-14
## weekdaySaturday:isHolyday          -1.440027e-14  3.487052e-14
## weekdaySunday:isHolyday            -1.601502e-14  4.254550e-14
## weekdayMonday:month02:isHolyday    -1.410311e-14  4.912056e-14
## weekdayTuesday:month02:isHolyday   -6.956746e-15  6.247475e-14
## weekdayWednesday:month02:isHolyday -4.164216e-15  6.064609e-14
## weekdayThursday:month02:isHolyday   4.584478e-14  1.205388e-13
## weekdayFriday:month02:isHolyday     6.924098e-14  1.549753e-13
## weekdaySaturday:month02:isHolyday   1.819126e-14  1.036914e-13
## weekdaySunday:month02:isHolyday               NA            NA
## weekdayMonday:month03:isHolyday               NA            NA
## weekdayTuesday:month03:isHolyday              NA            NA
## weekdayWednesday:month03:isHolyday            NA            NA
## weekdayThursday:month03:isHolyday             NA            NA
## weekdayFriday:month03:isHolyday               NA            NA
## weekdaySaturday:month03:isHolyday             NA            NA
## weekdaySunday:month03:isHolyday               NA            NA
## weekdayMonday:month04:isHolyday               NA            NA
## weekdayTuesday:month04:isHolyday              NA            NA
## weekdayWednesday:month04:isHolyday            NA            NA
## weekdayThursday:month04:isHolyday             NA            NA
## weekdayFriday:month04:isHolyday               NA            NA
## weekdaySaturday:month04:isHolyday             NA            NA
## weekdaySunday:month04:isHolyday               NA            NA
## weekdayMonday:month05:isHolyday    -4.976687e-14  4.059820e-15
## weekdayTuesday:month05:isHolyday   -6.631030e-14 -1.093667e-14
## weekdayWednesday:month05:isHolyday            NA            NA
## weekdayThursday:month05:isHolyday             NA            NA
## weekdayFriday:month05:isHolyday               NA            NA
## weekdaySaturday:month05:isHolyday             NA            NA
## weekdaySunday:month05:isHolyday    -3.839266e-14  3.543595e-14
## weekdayMonday:month06:isHolyday               NA            NA
## weekdayTuesday:month06:isHolyday              NA            NA
## weekdayWednesday:month06:isHolyday -4.980762e-14  1.936097e-14
## weekdayThursday:month06:isHolyday             NA            NA
## weekdayFriday:month06:isHolyday               NA            NA
## weekdaySaturday:month06:isHolyday             NA            NA
## weekdaySunday:month06:isHolyday               NA            NA
## weekdayMonday:month07:isHolyday               NA            NA
## weekdayTuesday:month07:isHolyday              NA            NA
## weekdayWednesday:month07:isHolyday            NA            NA
## weekdayThursday:month07:isHolyday             NA            NA
## weekdayFriday:month07:isHolyday               NA            NA
## weekdaySaturday:month07:isHolyday             NA            NA
## weekdaySunday:month07:isHolyday               NA            NA
## weekdayMonday:month08:isHolyday               NA            NA
## weekdayTuesday:month08:isHolyday              NA            NA
## weekdayWednesday:month08:isHolyday -2.196252e-14  4.433923e-14
## weekdayThursday:month08:isHolyday             NA            NA
## weekdayFriday:month08:isHolyday               NA            NA
## weekdaySaturday:month08:isHolyday             NA            NA
## weekdaySunday:month08:isHolyday               NA            NA
## weekdayMonday:month09:isHolyday    -2.487176e-15  8.735645e-14
## weekdayTuesday:month09:isHolyday   -3.076878e-14  4.767761e-14
## weekdayWednesday:month09:isHolyday -3.553493e-14  3.959826e-14
## weekdayThursday:month09:isHolyday             NA            NA
## weekdayFriday:month09:isHolyday               NA            NA
## weekdaySaturday:month09:isHolyday             NA            NA
## weekdaySunday:month09:isHolyday               NA            NA
## weekdayMonday:month10:isHolyday               NA            NA
## weekdayTuesday:month10:isHolyday   -6.552769e-14 -6.163554e-15
## weekdayWednesday:month10:isHolyday            NA            NA
## weekdayThursday:month10:isHolyday             NA            NA
## weekdayFriday:month10:isHolyday               NA            NA
## weekdaySaturday:month10:isHolyday             NA            NA
## weekdaySunday:month10:isHolyday               NA            NA
## weekdayMonday:month11:isHolyday               NA            NA
## weekdayTuesday:month11:isHolyday              NA            NA
## weekdayWednesday:month11:isHolyday            NA            NA
## weekdayThursday:month11:isHolyday             NA            NA
## weekdayFriday:month11:isHolyday               NA            NA
## weekdaySaturday:month11:isHolyday             NA            NA
## weekdaySunday:month11:isHolyday               NA            NA
## weekdayMonday:month12:isHolyday               NA            NA
## weekdayTuesday:month12:isHolyday   -5.479499e-14  4.836852e-15
## weekdayWednesday:month12:isHolyday            NA            NA
## weekdayThursday:month12:isHolyday             NA            NA
## weekdayFriday:month12:isHolyday               NA            NA
## weekdaySaturday:month12:isHolyday             NA            NA
## weekdaySunday:month12:isHolyday               NA            NA
###  예측기간 관측치 더하기 (검증을 위한 사후 처리...)
test_btv_pre_roll2$REQ [test_btv_pre_roll2$Date >= '2019-05-01' & test_btv_pre_roll2$Date <= '2019-05-31'] <- 
  btv_pre_roll$REQ [btv_pre_roll$Date >= '2019-05-01' & btv_pre_roll$Date <= '2019-05-31']

test_btv_pre_roll3$REQ [test_btv_pre_roll3$Date >= '2019-06-01' & test_btv_pre_roll3$Date <= '2019-06-30'] <- 
  btv_pre_roll$REQ [btv_pre_roll$Date >= '2019-06-01' & btv_pre_roll$Date <= '2019-06-30']

cor(test_btv_pre_roll2$REQ, test_btv_pre_roll2$m1_fit)^2
## [1] 0.7858214
cor(test_btv_pre_roll2$REQ, test_btv_pre_roll2$m2_fit)^2
## [1] 0.7858214
cor(test_btv_pre_roll2$REQ, test_btv_pre_roll2$m3_fit)^2
## [1] 0.7855516
cor(test_btv_pre_roll2$REQ, test_btv_pre_roll2$m4_fit)^2
## [1] 0.7841779
cor(test_btv_pre_roll3$REQ, test_btv_pre_roll3$m1_fit)^2
## [1] 0.841047
cor(test_btv_pre_roll3$REQ, test_btv_pre_roll3$m2_fit)^2
## [1] 0.841047
cor(test_btv_pre_roll3$REQ, test_btv_pre_roll3$m3_fit)^2
## [1] 0.8389602
cor(test_btv_pre_roll3$REQ, test_btv_pre_roll3$m4_fit)^2
## [1] 0.8235133
# MAE
mean(abs(test_btv_pre_roll2$REQ - test_btv_pre_roll2$m1_fit))
## [1] 153112.3
mean(abs(test_btv_pre_roll2$REQ - test_btv_pre_roll2$m2_fit))
## [1] 153112.3
mean(abs(test_btv_pre_roll2$REQ - test_btv_pre_roll2$m3_fit))
## [1] 154276.4
mean(abs(test_btv_pre_roll2$REQ - test_btv_pre_roll2$m4_fit))
## [1] 155203.9
mean(abs(test_btv_pre_roll3$REQ - test_btv_pre_roll3$m1_fit))
## [1] 137020.5
mean(abs(test_btv_pre_roll3$REQ - test_btv_pre_roll3$m2_fit))
## [1] 137020.5
mean(abs(test_btv_pre_roll3$REQ - test_btv_pre_roll3$m3_fit))
## [1] 138880.1
mean(abs(test_btv_pre_roll3$REQ - test_btv_pre_roll3$m4_fit))
## [1] 147364
# MAPE
mean(abs(test_btv_pre_roll2$REQ - test_btv_pre_roll2$m1_fit)/abs(test_btv_pre_roll2$REQ))*100
## [1] 4.342613
mean(abs(test_btv_pre_roll2$REQ - test_btv_pre_roll2$m2_fit)/abs(test_btv_pre_roll2$REQ))*100
## [1] 4.342613
mean(abs(test_btv_pre_roll2$REQ - test_btv_pre_roll2$m3_fit)/abs(test_btv_pre_roll2$REQ))*100
## [1] 4.375261
mean(abs(test_btv_pre_roll2$REQ - test_btv_pre_roll2$m4_fit)/abs(test_btv_pre_roll2$REQ))*100
## [1] 4.402082
mean(abs(test_btv_pre_roll3$REQ - test_btv_pre_roll3$m1_fit)/abs(test_btv_pre_roll3$REQ))*100
## [1] 3.775664
mean(abs(test_btv_pre_roll3$REQ - test_btv_pre_roll3$m2_fit)/abs(test_btv_pre_roll3$REQ))*100
## [1] 3.775664
mean(abs(test_btv_pre_roll3$REQ - test_btv_pre_roll3$m3_fit)/abs(test_btv_pre_roll3$REQ))*100
## [1] 3.825968
mean(abs(test_btv_pre_roll3$REQ - test_btv_pre_roll3$m4_fit)/abs(test_btv_pre_roll3$REQ))*100
## [1] 4.062741