# Sample Mean
(Mean <- (65 + 77) / 2)
## [1] 71
# Margin or Error
(ME <- 77-71)
## [1] 6
# Calculate the T-score
t <- qt(.05, df=24)
# Standard deviation
(Sd <- ME/t * sqrt(25))
## [1] -17.53481
z_score <- 1.65
ME <- 25
sd <- 250
(sample_size <- ((z_score * sd) / ME) ^2)
## [1] 272.25
z <- qnorm(.995, mean = 0, sd = 1)
Sample_size <- ((z^2) / (25^2)) * 250^2
round(Sample_size)
## [1] 663
# Calculating T scores
SE <- 8.887/sqrt(200)
t = (-0.545-0)/SE
# P- value
p = pt(q=t, df=199, lower.tail = TRUE)
2 * p
## [1] 0.3868365
auto_mu <- 16.12
auto_sd <- 3.58
man_mu <- 19.85
man_sd <- 4.51
n <- 26
diff <- man_mu - auto_mu
se <- sqrt((auto_sd^2/n) + (man_sd^2/n))
t <- (diff - 0)/se
(p = pt(t, n-1, lower.tail = FALSE))
## [1] 0.001441807
s = 2.2
mu = 0
delta = 0.5
ns = 10:1000
power = rep(NA, length(ns))
for(i in 10:1000){
n = i
t_star = qt(0.95, df = n-1)
se = sqrt((s^2 / n) + (s^2 / n))
cutoff = t_star * se
t_cutoff = (cutoff - (mu+delta)) / se
power[i-8] = pt(t_cutoff, df = n-1, lower.tail = FALSE)
}
which_n = which.min(abs(power - 0.8))
power[which_n]
## [1] 0.8001341
power[which_n + 1]
## [1] 0.8015823
ns[which_n + 1]
## [1] 243
Data606 <- data.frame(
heading <- c("degree","Residuals","Total"),
Df <- c("4","1167","1171"),
SumSq <- c("2004.1","267382","269386.1"),
MeanSq <- c("501.54","229.13",""),
Fvalue <- c("2.19","",""),
prf <- c("0.0682","","")
)
colnames(Data606) <- c("heading","Df","Sum Sq","Mean Sq","F value","Pr(>F)")
knitr::kable(Data606)
heading | Df | Sum Sq | Mean Sq | F value | Pr(>F) |
---|---|---|---|---|---|
degree | 4 | 2004.1 | 501.54 | 2.19 | 0.0682 |
Residuals | 1167 | 267382 | 229.13 | ||
Total | 1171 | 269386.1 |