A die is rolled 24 times. Use the Central Limit Theorem to estimate the probability that
P(S24 > 84) - ?
The sum is a random variable: S(24) = X1 + X2 + … + X24,
where each Xj has distribution
Mx = 1(1/6)+2(1/6)+3(1/6)+4(1/6)+5(1/6)+6(1/6)= 7/2
σ2 = V(X)=16(25/4+9/4+1/4+1/4+9/4+25/4)=35/12
E(S24) = 24 * 7/2 = 84
σ2(S24) = 24 * 35/12 = 70
σ = sqrt(70) = 8.367
P(S24) = (84.5−84)/8.366
#
P = (84.5 - 24 * 7/2)/sqrt(24 * 35/12)
p_h<- 1 - pnorm(P)
p_h
## [1] 0.4761728
P(S24 = 84) - ?
P = (83.5 - 24 * 7/2)/sqrt(24 * 35/12)
p_l <- pnorm(P)
p_l
## [1] 0.4761728
P(S24 = 84) = 1- (P(S24 > 84) + P(S24 < 84))
1- (p_h+p_l)
## [1] 0.04765436