1. \((3x+5y)^{200}\) 展開後,\(x^{50}y^{150}\) 的係數
  1. \((4a-5b)^{88}\) 展開後,\(a^{55}b^{33}\) 的係數
  1. \(f(x)=(3x+5)(4x-7)\),則 \(f'(x)= 3\cdot(4x-7)+(3x+5)\cdot4=12x-21+12x+20=24x-1\)
  1. \(f(x)=x^{-\frac{1}{3}}\),則 \(f'(x)= -\frac{1}{3} x^{-\frac{4}{3}} = -\frac{1}{3\sqrt[3]{x^4}} \Rightarrow f'(1)= -\frac{1}{3}\)
  1. \(f(x)=(4x+5)^{\frac{3}{2}}\),則 \(f'(x)= \frac{3}{2} (4x+5)^{\frac{1}{2}}\cdot4 = 6\sqrt{4x+5} \Rightarrow f'(1)= 6 \cdot \sqrt{9} = 18\)
  1. \(f(x)=\frac{3}{6x+2}\),則 \(f'(x)= \frac{0 \cdot (6x+2)-3 \cdot 6}{(6x+2)^2}\cdot 4 = \frac{-18}{(6x+2)^2} \Rightarrow f'(0)= \frac{-18}{2^2} = -\frac{9}{2}\)
  1. \(f(x)=\sqrt{x}\) 在點 \((4,2)\) 之切線斜率:
  1. \(f(x)=x^{-1}\),則 \(f^{(100)}(x)=\)
  1. \(f(x)=\frac{2}{x-2}\),則 \(f'(x)= \frac{0 \cdot (x-2)-2 \cdot 1}{(x-2)^2} = \frac{-2}{(x-2)^2} \Rightarrow f'(0)= \frac{-2}{(-2)^2} = -\frac{1}{2}\)
  1. \(f(x)=(2x+1)^{100}\),則 \(f'(x)= 100 (2x+1)^{99}\cdot 2 = 200(2x+1)^{99} \Rightarrow f'(0)= 200\cdot 1^{99} = 200\)
  1. 利用微分求近似值,可得 \(\sqrt{63} \approx\)