library(e1071)
## Warning: package 'e1071' was built under R version 3.5.3
library(devtools)
## Warning: package 'devtools' was built under R version 3.5.3
## Loading required package: usethis
## Warning: package 'usethis' was built under R version 3.5.3
library(caret)
## Warning: package 'caret' was built under R version 3.5.3
## Loading required package: lattice
## Warning: package 'lattice' was built under R version 3.5.3
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 3.5.3
data=read.delim("clipboard", header=T)
databaru=data[,2:24]
#90:10
#Training sample with n observation
n.90=round(nrow(data)*0.9)
n.90
## [1] 176
#Training Sample with n observations
set.seed(12345)
sample.90=sample(seq_len(nrow(databaru)),size = n.90)
train.90=data[sample.90,]
test.90=data[-sample.90,]
##SUPPORT VECTOR MACHINE
data.svm.90 <- svm(Status ~., data = train.90) #
## Warning in svm.default(x, y, scale = scale, ..., na.action = na.action):
## Variable(s) 'MDVP_Jitter_Abs' constant. Cannot scale data.
data.svm.90
## 
## Call:
## svm(formula = Status ~ ., data = train.90)
## 
## 
## Parameters:
##    SVM-Type:  C-classification 
##  SVM-Kernel:  radial 
##        cost:  1 
## 
## Number of Support Vectors:  176
#pengujian model SVM data training
pred.90 <- predict(data.svm.90,train.90)
pred.90
##       141       170       147       171        88        32        62 
## Parkinson     Sehat Parkinson     Sehat Parkinson     Sehat     Sehat 
##        96       137       185         7        29       135         1 
## Parkinson Parkinson     Sehat Parkinson Parkinson Parkinson Parkinson 
##        71        84        70        72       190       168        80 
## Parkinson Parkinson Parkinson Parkinson     Sehat     Sehat Parkinson 
##        57       176       122       111        67       119        92 
## Parkinson     Sehat Parkinson Parkinson Parkinson Parkinson Parkinson 
##        38        81       131       182        31       192        60 
## Parkinson Parkinson Parkinson Parkinson     Sehat     Sehat Parkinson 
##        58       139       143        97        21       172       194 
## Parkinson Parkinson Parkinson Parkinson Parkinson     Sehat     Sehat 
##       142       118        40        49         9       186       149 
## Parkinson Parkinson Parkinson     Sehat Parkinson     Sehat Parkinson 
##       173       140       120        46       163       104       179 
##     Sehat Parkinson Parkinson     Sehat Parkinson Parkinson Parkinson 
##       102        12       161        33       107        35       132 
## Parkinson Parkinson Parkinson     Sehat Parkinson     Sehat Parkinson 
##       100       129       184       123        20        77       144 
## Parkinson Parkinson     Sehat Parkinson Parkinson Parkinson Parkinson 
##        87        63       158        41         6        75       115 
## Parkinson     Sehat Parkinson Parkinson Parkinson Parkinson Parkinson 
##        78       187        18       101        59       164         3 
## Parkinson     Sehat Parkinson Parkinson Parkinson Parkinson Parkinson 
##        17        34        90        55        86       148        98 
## Parkinson     Sehat Parkinson Parkinson Parkinson Parkinson Parkinson 
##        85       193       189        73        52       178        74 
## Parkinson     Sehat     Sehat Parkinson     Sehat Parkinson Parkinson 
##        10        39        28       114        91       174        48 
## Parkinson Parkinson Parkinson Parkinson Parkinson     Sehat     Sehat 
##        82       146       127        22        19       133       136 
## Parkinson Parkinson Parkinson Parkinson Parkinson Parkinson Parkinson 
##       124       177        65       169       152       165       113 
## Parkinson     Sehat     Sehat     Sehat Parkinson Parkinson Parkinson 
##        25        42       188       106        50        51        89 
## Parkinson Parkinson     Sehat Parkinson     Sehat     Sehat Parkinson 
##        66        13       183       195       112        44        69 
##     Sehat Parkinson Parkinson     Sehat Parkinson     Sehat Parkinson 
##       126       160        53       159        11       121        79 
## Parkinson Parkinson     Sehat Parkinson Parkinson Parkinson Parkinson 
##       130       167       138       180         8        93       150 
## Parkinson     Sehat Parkinson Parkinson Parkinson Parkinson Parkinson 
##        24        64       116        54        76       134        15 
## Parkinson     Sehat Parkinson     Sehat Parkinson Parkinson Parkinson 
##       103       109        27       162       151       125        26 
## Parkinson Parkinson Parkinson Parkinson Parkinson Parkinson Parkinson 
##       156       108       105       117        94        83         5 
## Parkinson Parkinson Parkinson Parkinson Parkinson Parkinson Parkinson 
##        23        61        47        95        56       175       181 
## Parkinson     Sehat     Sehat Parkinson Parkinson     Sehat Parkinson 
##        16 
## Parkinson 
## Levels: Parkinson Sehat
#80:20
#Training sample with n observation
n.80=round(nrow(data)*0.8)
n.80
## [1] 156
#Training Sample with n observations
set.seed(12345)
sample.80=sample(seq_len(nrow(databaru)),size = n.80)
train.80=data[sample.80,]
test.80=data[-sample.80,]
##SUPPORT VECTOR MACHINE
data.svm.80 <- svm(Status ~., data = train.80) #
## Warning in svm.default(x, y, scale = scale, ..., na.action = na.action):
## Variable(s) 'MDVP_Jitter_Abs' constant. Cannot scale data.
data.svm.80
## 
## Call:
## svm(formula = Status ~ ., data = train.80)
## 
## 
## Parameters:
##    SVM-Type:  C-classification 
##  SVM-Kernel:  radial 
##        cost:  1 
## 
## Number of Support Vectors:  156
#pengujian model SVM data training
pred.80 <- predict(data.svm.80,train.80)
#70:30
#Training sample with n observation
n.70=round(nrow(data)*0.7)
n.70
## [1] 136
#Training Sample with n observations
set.seed(12345)
sample.70=sample(seq_len(nrow(databaru)),size = n.70)
train.70=data[sample.70,]
test70=data[-sample.70,]
##SUPPORT VECTOR MACHINE
data.svm.70 <- svm(Status ~., data = train.70) #
## Warning in svm.default(x, y, scale = scale, ..., na.action = na.action):
## Variable(s) 'MDVP_Jitter_Abs' constant. Cannot scale data.
data.svm.70
## 
## Call:
## svm(formula = Status ~ ., data = train.70)
## 
## 
## Parameters:
##    SVM-Type:  C-classification 
##  SVM-Kernel:  radial 
##        cost:  1 
## 
## Number of Support Vectors:  136
#pengujian model SVM data training
pred.70 <- predict(data.svm.70,train.70)