#MARR 8.6
data(turtle, package="faraway")
t<-turtle
T.t<-t$male + t$female
Temp<-t$temp
P.male<-t$male/T.t
dat = data.frame(Temp,T.t, P.male)
log = glm(P.male ~ Temp, family =binomial, weights = T.t, data= dat)
summary(log)
##
## Call:
## glm(formula = P.male ~ Temp, family = binomial, data = dat, weights = T.t)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.0721 -1.0292 -0.2714 0.8087 2.5550
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -61.3183 12.0224 -5.100 3.39e-07 ***
## Temp 2.2110 0.4309 5.132 2.87e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 74.508 on 14 degrees of freedom
## Residual deviance: 24.942 on 13 degrees of freedom
## AIC: 53.836
##
## Number of Fisher Scoring iterations: 5
plot(P.male ~ Temp, pch=16)
curve(predict(log, data.frame(Temp=x), type="resp"), add=T)
points(t$temp, fitted(log), pch=20)
