Let x1,x2,x3…xn be independent exonential random variable, each of which has exponential density with mean \(\mu\) and the minimum value \(M\) is expoential with mean \(\frac{\mu}{n}\)
In this case, \(\mu = 1000\) hours and n = 100, so the expected value of M = \(\frac{\mu}{n} = \frac{1000}{10}\) = 10 hours.
Thus the expected time for the first of these bulbs to burn out is 10 hours.
\[f(z)=\frac{1}{2}λe^{−λ|z|}\] Answer:
\[\begin{equation} fX_1(x) = fX_2(x) = \begin{cases} \lambda e^{-\lambda x}, &x >=0 \\ 0, & x<0 \end{cases} \end{equation}\]
\[ f_Z(z) = \int_{-\infty}^{\infty} fX_1(x)fX_2(x-z) \; dx \]
\[ =\int_{0}^{\infty}\lambda e^{-\lambda x} \lambda e^{-\lambda (x-z)}dx \]
\[ =\int_{0}^{\infty}\lambda^2e^{-2\lambda x+\lambda z}dx \]
\[ =\lambda e^{\lambda z} \int_{0}^{\infty}e^{-2\lambda x}dx \]
\[ =\frac{1}{2}λe^{−λ|z|} \]
\(\delta^2 = 100/3\)
\(\mu = 10\)
Given \(P(|X-\mu|>= \epsilon) <= \frac{\delta^2}{\epsilon^2}\)
\(P(|X-10|>=2) <= \frac{100/3}{2^2}\)
\(P(|X-10|>=2) <= \frac{25}{3}\)
\(P(|X-10|>=5) <= \frac{100/3}{5^2}\)
\(P(|X-10|>=5) <= \frac{4}{3}\)
\(P(|X-10|>=9) <= \frac{100/3}{9^2}\)
\(P(|X-10|>=9) <= \frac{100}{243}\)
\(P(|X-10|>=20) <= \frac{100/3}{20^2}\)
\(P(|X-10|>=20) <= \frac{1}{12}\)