library(keras)
mnist <- dataset_mnist()
x_train <- mnist$train$x
y_train <- mnist$train$y
x_test <- mnist$test$x
y_test <- mnist$test$y
reticulate::py_config()
## python: C:\conda\envs\r-reticulate\python.exe
## libpython: C:/conda/envs/r-reticulate/python36.dll
## pythonhome: C:\conda\envs\R-RETI~1
## version: 3.6.9 |Anaconda, Inc.| (default, Jul 30 2019, 14:00:49) [MSC v.1915 64 bit (AMD64)]
## Architecture: 64bit
## numpy: C:\conda\envs\R-RETI~1\lib\site-packages\numpy
## numpy_version: 1.17.3
## tensorflow: C:\conda\envs\R-RETI~1\lib\site-packages\tensorflow\__init__.p
##
## python versions found:
## C:\conda\envs\r-reticulate\python.exe
## C:\conda\envs\R-RETI~1\python.exe
## C:\conda\python.exe
## C:\Users\somy\AppData\Local\Programs\Python\Python38\\python.exe
tensorflow::tf_config()
## TensorFlow v1.14.0 (C:\conda\envs\R-RETI~1\lib\site-packages\tensorflow\__init__.p)
## Python v3.6 (C:\conda\envs\r-reticulate\python.exe)
# reshape
x_train <- array_reshape(x_train, c(nrow(x_train), 784))
x_test <- array_reshape(x_test, c(nrow(x_test), 784))
# rescale
x_train <- x_train / 255
x_test <- x_test / 255
y_train <- to_categorical(y_train, 10)
y_test <- to_categorical(y_test, 10)
model <- keras_model_sequential()
model %>%
layer_dense(units = 256, activation = 'relu', input_shape = c(784)) %>%
layer_dropout(rate = 0.4) %>%
layer_dense(units = 128, activation = 'relu') %>%
layer_dropout(rate = 0.3) %>%
layer_dense(units = 10, activation = 'softmax')
summary(model)
## Model: "sequential"
## ___________________________________________________________________________
## Layer (type) Output Shape Param #
## ===========================================================================
## dense (Dense) (None, 256) 200960
## ___________________________________________________________________________
## dropout (Dropout) (None, 256) 0
## ___________________________________________________________________________
## dense_1 (Dense) (None, 128) 32896
## ___________________________________________________________________________
## dropout_1 (Dropout) (None, 128) 0
## ___________________________________________________________________________
## dense_2 (Dense) (None, 10) 1290
## ===========================================================================
## Total params: 235,146
## Trainable params: 235,146
## Non-trainable params: 0
## ___________________________________________________________________________
model %>% compile(
loss = 'categorical_crossentropy',
optimizer = optimizer_rmsprop(),
metrics = c('accuracy')
)
history <- model %>% fit(
x_train, y_train,
epochs = 30, batch_size = 128,
validation_split = 0.2
)
plot(history)
