Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively. These type of devices are part of the quantified self movement – a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior, or because they are tech geeks. One thing that people regularly do is quantify how much of a particular activity they do, but they rarely quantify how well they do it. In this project, your goal will be to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants. They were asked to perform barbell lifts correctly and incorrectly in 5 different ways. More information is available from the website here: http://web.archive.org/web/20161224072740/http:/groupware.les.inf.puc-rio.br/har (see the section on the Weight Lifting Exercise Dataset).
First we download the available data by the links that were provided. The training data for this project are available here: https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv
The test data are available here: https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv
The data for this project come from this source: http://web.archive.org/web/20161224072740/http:/groupware.les.inf.puc-rio.br/har
train <- read.csv("https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv", header = TRUE, na.strings=c("NA","#DIV/0!",""))
test <- read.csv("https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv", header = TRUE, na.strings=c("NA","#DIV/0!",""))
str(train)
## 'data.frame': 19622 obs. of 160 variables:
## $ X : int 1 2 3 4 5 6 7 8 9 10 ...
## $ user_name : Factor w/ 6 levels "adelmo","carlitos",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ raw_timestamp_part_1 : int 1323084231 1323084231 1323084231 1323084232 1323084232 1323084232 1323084232 1323084232 1323084232 1323084232 ...
## $ raw_timestamp_part_2 : int 788290 808298 820366 120339 196328 304277 368296 440390 484323 484434 ...
## $ cvtd_timestamp : Factor w/ 20 levels "02/12/2011 13:32",..: 9 9 9 9 9 9 9 9 9 9 ...
## $ new_window : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 1 1 1 ...
## $ num_window : int 11 11 11 12 12 12 12 12 12 12 ...
## $ roll_belt : num 1.41 1.41 1.42 1.48 1.48 1.45 1.42 1.42 1.43 1.45 ...
## $ pitch_belt : num 8.07 8.07 8.07 8.05 8.07 8.06 8.09 8.13 8.16 8.17 ...
## $ yaw_belt : num -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 ...
## $ total_accel_belt : int 3 3 3 3 3 3 3 3 3 3 ...
## $ kurtosis_roll_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ kurtosis_picth_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ kurtosis_yaw_belt : logi NA NA NA NA NA NA ...
## $ skewness_roll_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ skewness_roll_belt.1 : num NA NA NA NA NA NA NA NA NA NA ...
## $ skewness_yaw_belt : logi NA NA NA NA NA NA ...
## $ max_roll_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ max_picth_belt : int NA NA NA NA NA NA NA NA NA NA ...
## $ max_yaw_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ min_roll_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ min_pitch_belt : int NA NA NA NA NA NA NA NA NA NA ...
## $ min_yaw_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ amplitude_roll_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ amplitude_pitch_belt : int NA NA NA NA NA NA NA NA NA NA ...
## $ amplitude_yaw_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ var_total_accel_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ avg_roll_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ stddev_roll_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ var_roll_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ avg_pitch_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ stddev_pitch_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ var_pitch_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ avg_yaw_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ stddev_yaw_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ var_yaw_belt : num NA NA NA NA NA NA NA NA NA NA ...
## $ gyros_belt_x : num 0 0.02 0 0.02 0.02 0.02 0.02 0.02 0.02 0.03 ...
## $ gyros_belt_y : num 0 0 0 0 0.02 0 0 0 0 0 ...
## $ gyros_belt_z : num -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 0 ...
## $ accel_belt_x : int -21 -22 -20 -22 -21 -21 -22 -22 -20 -21 ...
## $ accel_belt_y : int 4 4 5 3 2 4 3 4 2 4 ...
## $ accel_belt_z : int 22 22 23 21 24 21 21 21 24 22 ...
## $ magnet_belt_x : int -3 -7 -2 -6 -6 0 -4 -2 1 -3 ...
## $ magnet_belt_y : int 599 608 600 604 600 603 599 603 602 609 ...
## $ magnet_belt_z : int -313 -311 -305 -310 -302 -312 -311 -313 -312 -308 ...
## $ roll_arm : num -128 -128 -128 -128 -128 -128 -128 -128 -128 -128 ...
## $ pitch_arm : num 22.5 22.5 22.5 22.1 22.1 22 21.9 21.8 21.7 21.6 ...
## $ yaw_arm : num -161 -161 -161 -161 -161 -161 -161 -161 -161 -161 ...
## $ total_accel_arm : int 34 34 34 34 34 34 34 34 34 34 ...
## $ var_accel_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ avg_roll_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ stddev_roll_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ var_roll_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ avg_pitch_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ stddev_pitch_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ var_pitch_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ avg_yaw_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ stddev_yaw_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ var_yaw_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ gyros_arm_x : num 0 0.02 0.02 0.02 0 0.02 0 0.02 0.02 0.02 ...
## $ gyros_arm_y : num 0 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.02 -0.03 -0.03 ...
## $ gyros_arm_z : num -0.02 -0.02 -0.02 0.02 0 0 0 0 -0.02 -0.02 ...
## $ accel_arm_x : int -288 -290 -289 -289 -289 -289 -289 -289 -288 -288 ...
## $ accel_arm_y : int 109 110 110 111 111 111 111 111 109 110 ...
## $ accel_arm_z : int -123 -125 -126 -123 -123 -122 -125 -124 -122 -124 ...
## $ magnet_arm_x : int -368 -369 -368 -372 -374 -369 -373 -372 -369 -376 ...
## $ magnet_arm_y : int 337 337 344 344 337 342 336 338 341 334 ...
## $ magnet_arm_z : int 516 513 513 512 506 513 509 510 518 516 ...
## $ kurtosis_roll_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ kurtosis_picth_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ kurtosis_yaw_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ skewness_roll_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ skewness_pitch_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ skewness_yaw_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ max_roll_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ max_picth_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ max_yaw_arm : int NA NA NA NA NA NA NA NA NA NA ...
## $ min_roll_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ min_pitch_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ min_yaw_arm : int NA NA NA NA NA NA NA NA NA NA ...
## $ amplitude_roll_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ amplitude_pitch_arm : num NA NA NA NA NA NA NA NA NA NA ...
## $ amplitude_yaw_arm : int NA NA NA NA NA NA NA NA NA NA ...
## $ roll_dumbbell : num 13.1 13.1 12.9 13.4 13.4 ...
## $ pitch_dumbbell : num -70.5 -70.6 -70.3 -70.4 -70.4 ...
## $ yaw_dumbbell : num -84.9 -84.7 -85.1 -84.9 -84.9 ...
## $ kurtosis_roll_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## $ kurtosis_picth_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## $ kurtosis_yaw_dumbbell : logi NA NA NA NA NA NA ...
## $ skewness_roll_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## $ skewness_pitch_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## $ skewness_yaw_dumbbell : logi NA NA NA NA NA NA ...
## $ max_roll_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## $ max_picth_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## $ max_yaw_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## $ min_roll_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## $ min_pitch_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## $ min_yaw_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## $ amplitude_roll_dumbbell : num NA NA NA NA NA NA NA NA NA NA ...
## [list output truncated]
As the dataset contains columns with mostly (>95%) ‘NA’-data these were first removed. Furthermore column 1-6 contained no data that would be valuable as a predictor. These were removed as well. Lastly, any variables with zero variance were removed as well as these would not be valuable predictors.
# Remove NA
train_sel <- subset(train, select=colMeans(is.na(train))<0.05)
# Remove irrelevant data
train_sel <- train_sel[,7:length(train_sel)]
# Remove zero variance
NZV <- nearZeroVar(train_sel, saveMetrics = TRUE)
NZV # all false, none to remove
## freqRatio percentUnique zeroVar nzv
## num_window 1.000000 4.3726430 FALSE FALSE
## roll_belt 1.101904 6.7781062 FALSE FALSE
## pitch_belt 1.036082 9.3772296 FALSE FALSE
## yaw_belt 1.058480 9.9734991 FALSE FALSE
## total_accel_belt 1.063160 0.1477933 FALSE FALSE
## gyros_belt_x 1.058651 0.7134849 FALSE FALSE
## gyros_belt_y 1.144000 0.3516461 FALSE FALSE
## gyros_belt_z 1.066214 0.8612782 FALSE FALSE
## accel_belt_x 1.055412 0.8357966 FALSE FALSE
## accel_belt_y 1.113725 0.7287738 FALSE FALSE
## accel_belt_z 1.078767 1.5237998 FALSE FALSE
## magnet_belt_x 1.090141 1.6664968 FALSE FALSE
## magnet_belt_y 1.099688 1.5187035 FALSE FALSE
## magnet_belt_z 1.006369 2.3290184 FALSE FALSE
## roll_arm 52.338462 13.5256345 FALSE FALSE
## pitch_arm 87.256410 15.7323412 FALSE FALSE
## yaw_arm 33.029126 14.6570176 FALSE FALSE
## total_accel_arm 1.024526 0.3363572 FALSE FALSE
## gyros_arm_x 1.015504 3.2769341 FALSE FALSE
## gyros_arm_y 1.454369 1.9162165 FALSE FALSE
## gyros_arm_z 1.110687 1.2638875 FALSE FALSE
## accel_arm_x 1.017341 3.9598410 FALSE FALSE
## accel_arm_y 1.140187 2.7367241 FALSE FALSE
## accel_arm_z 1.128000 4.0362858 FALSE FALSE
## magnet_arm_x 1.000000 6.8239731 FALSE FALSE
## magnet_arm_y 1.056818 4.4439914 FALSE FALSE
## magnet_arm_z 1.036364 6.4468454 FALSE FALSE
## roll_dumbbell 1.022388 84.2065029 FALSE FALSE
## pitch_dumbbell 2.277372 81.7449801 FALSE FALSE
## yaw_dumbbell 1.132231 83.4828254 FALSE FALSE
## total_accel_dumbbell 1.072634 0.2191418 FALSE FALSE
## gyros_dumbbell_x 1.003268 1.2282132 FALSE FALSE
## gyros_dumbbell_y 1.264957 1.4167771 FALSE FALSE
## gyros_dumbbell_z 1.060100 1.0498420 FALSE FALSE
## accel_dumbbell_x 1.018018 2.1659362 FALSE FALSE
## accel_dumbbell_y 1.053061 2.3748853 FALSE FALSE
## accel_dumbbell_z 1.133333 2.0894914 FALSE FALSE
## magnet_dumbbell_x 1.098266 5.7486495 FALSE FALSE
## magnet_dumbbell_y 1.197740 4.3012945 FALSE FALSE
## magnet_dumbbell_z 1.020833 3.4451126 FALSE FALSE
## roll_forearm 11.589286 11.0895933 FALSE FALSE
## pitch_forearm 65.983051 14.8557741 FALSE FALSE
## yaw_forearm 15.322835 10.1467740 FALSE FALSE
## total_accel_forearm 1.128928 0.3567424 FALSE FALSE
## gyros_forearm_x 1.059273 1.5187035 FALSE FALSE
## gyros_forearm_y 1.036554 3.7763735 FALSE FALSE
## gyros_forearm_z 1.122917 1.5645704 FALSE FALSE
## accel_forearm_x 1.126437 4.0464784 FALSE FALSE
## accel_forearm_y 1.059406 5.1116094 FALSE FALSE
## accel_forearm_z 1.006250 2.9558659 FALSE FALSE
## magnet_forearm_x 1.012346 7.7667924 FALSE FALSE
## magnet_forearm_y 1.246914 9.5403119 FALSE FALSE
## magnet_forearm_z 1.000000 8.5771073 FALSE FALSE
## classe 1.469581 0.0254816 FALSE FALSE
# Generate training and testing dataset
inTrain1 <- createDataPartition(train_sel$classe, p=0.6, list=FALSE)
Train1 <- train_sel[inTrain1,]
Test1 <- train_sel[-inTrain1,]
dim(Train1)
## [1] 11776 54
dim(Test1)
## [1] 7846 54
For the prediction a random forest model was chosen based on the fact that this is a classification problem in which this model typically excels. The model is fitted on the generated training data set
# speed up calculation by making use of multiple threads on CPU
cl <- makePSOCKcluster(10)
registerDoParallel(cl)
fit_DF <- train(classe~., data=Train1, method="rf", trControl=trainControl(method="cv", number=5), verbose=FALSE)
stopCluster(cl)
print(fit_DF) # print model
## Random Forest
##
## 11776 samples
## 53 predictor
## 5 classes: 'A', 'B', 'C', 'D', 'E'
##
## No pre-processing
## Resampling: Cross-Validated (5 fold)
## Summary of sample sizes: 9422, 9420, 9420, 9421, 9421
## Resampling results across tuning parameters:
##
## mtry Accuracy Kappa
## 2 0.9921878 0.9901168
## 27 0.9959241 0.9948444
## 53 0.9909142 0.9885069
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 27.
plot(fit_DF) # plot model
names(fit_DF$finalModel) # names of the most valuable predictors
## [1] "call" "type" "predicted"
## [4] "err.rate" "confusion" "votes"
## [7] "oob.times" "classes" "importance"
## [10] "importanceSD" "localImportance" "proximity"
## [13] "ntree" "mtry" "forest"
## [16] "y" "test" "inbag"
## [19] "xNames" "problemType" "tuneValue"
## [22] "obsLevels" "param"
The model shows that a total number of 27 predictors achieves the best prediction result (99.5%). This is visible from the plot as well. The most valuable predictors are listed as well.
Using the generated test data set the out of sample error can be estimated. A confusion matrix is generated in order to calculate the statistics of the observed and predicted classes.
# out of sample error
predict_test <- predict(fit_DF, Test1)
confusionMatrix(Test1$classe,predict_test)
## Confusion Matrix and Statistics
##
## Reference
## Prediction A B C D E
## A 2232 0 0 0 0
## B 13 1505 0 0 0
## C 0 0 1362 6 0
## D 0 0 3 1283 0
## E 0 0 0 9 1433
##
## Overall Statistics
##
## Accuracy : 0.996
## 95% CI : (0.9944, 0.9973)
## No Information Rate : 0.2861
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.995
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: A Class: B Class: C Class: D Class: E
## Sensitivity 0.9942 1.0000 0.9978 0.9884 1.0000
## Specificity 1.0000 0.9979 0.9991 0.9995 0.9986
## Pos Pred Value 1.0000 0.9914 0.9956 0.9977 0.9938
## Neg Pred Value 0.9977 1.0000 0.9995 0.9977 1.0000
## Prevalence 0.2861 0.1918 0.1740 0.1654 0.1826
## Detection Rate 0.2845 0.1918 0.1736 0.1635 0.1826
## Detection Prevalence 0.2845 0.1935 0.1744 0.1639 0.1838
## Balanced Accuracy 0.9971 0.9990 0.9984 0.9940 0.9993
The out of sample accuracy is 99.6%
Using the generated training data set the in sample error can be estimated. A confusion matrix is generated in order to calculate the statistics of the observed and predicted classes.
# in sample error
predict_train <- predict(fit_DF, Train1)
confusionMatrix(Train1$classe,predict_train)
## Confusion Matrix and Statistics
##
## Reference
## Prediction A B C D E
## A 3348 0 0 0 0
## B 0 2279 0 0 0
## C 0 0 2054 0 0
## D 0 0 0 1930 0
## E 0 0 0 0 2165
##
## Overall Statistics
##
## Accuracy : 1
## 95% CI : (0.9997, 1)
## No Information Rate : 0.2843
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 1
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: A Class: B Class: C Class: D Class: E
## Sensitivity 1.0000 1.0000 1.0000 1.0000 1.0000
## Specificity 1.0000 1.0000 1.0000 1.0000 1.0000
## Pos Pred Value 1.0000 1.0000 1.0000 1.0000 1.0000
## Neg Pred Value 1.0000 1.0000 1.0000 1.0000 1.0000
## Prevalence 0.2843 0.1935 0.1744 0.1639 0.1838
## Detection Rate 0.2843 0.1935 0.1744 0.1639 0.1838
## Detection Prevalence 0.2843 0.1935 0.1744 0.1639 0.1838
## Balanced Accuracy 1.0000 1.0000 1.0000 1.0000 1.0000
The in sample accuracy is 100%.
Finally, the model is tested with the actual received Test data set. The solutions are also written out as files.
# predict final test set
predict_final <- predict(fit_DF, test)
print(predict_final)
## [1] B A B A A E D B A A B C B A E E A B B B
## Levels: A B C D E
# write out the prediction for the test set
pml_write_files = function(x) {
for (i in 1:length(x)) {
filename = paste0("problem_id_", i, ".txt")
write.table(x[i], file=filename, quote=FALSE,row.names=FALSE, col.names=FALSE)
}
}
pml_write_files(predict_final)