In the following, we will evaluate the brand preferences of Blackwell´s customers using Random Forest Analysis. We will start by training and testing the model with the complete data set and then move on to predicting brand preferences.
Therefore, the following preparatory steps have been undertaken in advance.
*Loading data sets and libraries
*Renaming attributes
*Selecting subset of arrtributes, pre-processing
*Data splitting
## Random Forest
##
## 7500 samples
## 3 predictor
## 2 classes: 'Belkin', 'Elago'
##
## Pre-processing: centered (3), scaled (3)
## Resampling results across tuning parameters:
##
## mtry Accuracy Kappa
## 2 0.7644000 0.5275373
## 3 0.7581333 0.5147988
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 2.
## rfPred
## Belkin Elago
## 1202 1298
## Confusion Matrix and Statistics
##
## Reference
## Prediction Belkin Elago
## Belkin 890 312
## Elago 273 1025
##
## Accuracy : 0.766
## 95% CI : (0.7489, 0.7825)
## No Information Rate : 0.5348
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.5307
##
## Mcnemar's Test P-Value : 0.1162
##
## Sensitivity : 0.7653
## Specificity : 0.7666
## Pos Pred Value : 0.7404
## Neg Pred Value : 0.7897
## Prevalence : 0.4652
## Detection Rate : 0.3560
## Detection Prevalence : 0.4808
## Balanced Accuracy : 0.7660
##
## 'Positive' Class : Belkin
##
## Random Forest
##
## 10000 samples
## 3 predictor
## 2 classes: 'Belkin', 'Elago'
##
## Pre-processing: centered (3), scaled (3)
## Resampling results across tuning parameters:
##
## mtry Accuracy Kappa
## 2 0.7658 0.5304365
## 3 0.7607 0.5200840
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 2.
##
## Belkin Elago
## 2468 2532