LMR Exercise 10.1

##      lcavol           lweight           age             lbph        
##  Min.   :-1.3471   Min.   :2.375   Min.   :41.00   Min.   :-1.3863  
##  1st Qu.: 0.5128   1st Qu.:3.376   1st Qu.:60.00   1st Qu.:-1.3863  
##  Median : 1.4469   Median :3.623   Median :65.00   Median : 0.3001  
##  Mean   : 1.3500   Mean   :3.653   Mean   :63.87   Mean   : 0.1004  
##  3rd Qu.: 2.1270   3rd Qu.:3.878   3rd Qu.:68.00   3rd Qu.: 1.5581  
##  Max.   : 3.8210   Max.   :6.108   Max.   :79.00   Max.   : 2.3263  
##       svi              lcp             gleason          pgg45       
##  Min.   :0.0000   Min.   :-1.3863   Min.   :6.000   Min.   :  0.00  
##  1st Qu.:0.0000   1st Qu.:-1.3863   1st Qu.:6.000   1st Qu.:  0.00  
##  Median :0.0000   Median :-0.7985   Median :7.000   Median : 15.00  
##  Mean   :0.2165   Mean   :-0.1794   Mean   :6.753   Mean   : 24.38  
##  3rd Qu.:0.0000   3rd Qu.: 1.1786   3rd Qu.:7.000   3rd Qu.: 40.00  
##  Max.   :1.0000   Max.   : 2.9042   Max.   :9.000   Max.   :100.00  
##       lpsa        
##  Min.   :-0.4308  
##  1st Qu.: 1.7317  
##  Median : 2.5915  
##  Mean   : 2.4784  
##  3rd Qu.: 3.0564  
##  Max.   : 5.5829
## 
## Call:
## lm(formula = lpsa ~ ., data = prostate)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.7331 -0.3713 -0.0170  0.4141  1.6381 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.669337   1.296387   0.516  0.60693    
## lcavol       0.587022   0.087920   6.677 2.11e-09 ***
## lweight      0.454467   0.170012   2.673  0.00896 ** 
## age         -0.019637   0.011173  -1.758  0.08229 .  
## lbph         0.107054   0.058449   1.832  0.07040 .  
## svi          0.766157   0.244309   3.136  0.00233 ** 
## lcp         -0.105474   0.091013  -1.159  0.24964    
## gleason      0.045142   0.157465   0.287  0.77503    
## pgg45        0.004525   0.004421   1.024  0.30886    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7084 on 88 degrees of freedom
## Multiple R-squared:  0.6548, Adjusted R-squared:  0.6234 
## F-statistic: 20.86 on 8 and 88 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = lpsa ~ lcavol + lweight + age + lbph + svi, data = prostate)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.83505 -0.39396  0.00414  0.46336  1.57888 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.95100    0.83175   1.143 0.255882    
## lcavol       0.56561    0.07459   7.583 2.77e-11 ***
## lweight      0.42369    0.16687   2.539 0.012814 *  
## age         -0.01489    0.01075  -1.385 0.169528    
## lbph         0.11184    0.05805   1.927 0.057160 .  
## svi          0.72095    0.20902   3.449 0.000854 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7073 on 91 degrees of freedom
## Multiple R-squared:  0.6441, Adjusted R-squared:  0.6245 
## F-statistic: 32.94 on 5 and 91 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = lpsa ~ lcavol + lweight + svi, data = prostate)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.72964 -0.45764  0.02812  0.46403  1.57013 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.26809    0.54350  -0.493  0.62298    
## lcavol       0.55164    0.07467   7.388  6.3e-11 ***
## lweight      0.50854    0.15017   3.386  0.00104 ** 
## svi          0.66616    0.20978   3.176  0.00203 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7168 on 93 degrees of freedom
## Multiple R-squared:  0.6264, Adjusted R-squared:  0.6144 
## F-statistic: 51.99 on 3 and 93 DF,  p-value: < 2.2e-16
##   (Intercept) lcavol lweight   age  lbph   svi   lcp gleason pgg45
## 1        TRUE   TRUE   FALSE FALSE FALSE FALSE FALSE   FALSE FALSE
## 2        TRUE   TRUE    TRUE FALSE FALSE FALSE FALSE   FALSE FALSE
## 3        TRUE   TRUE    TRUE FALSE FALSE  TRUE FALSE   FALSE FALSE
## 4        TRUE   TRUE    TRUE FALSE  TRUE  TRUE FALSE   FALSE FALSE
## 5        TRUE   TRUE    TRUE  TRUE  TRUE  TRUE FALSE   FALSE FALSE
## 6        TRUE   TRUE    TRUE  TRUE  TRUE  TRUE FALSE   FALSE  TRUE
## 7        TRUE   TRUE    TRUE  TRUE  TRUE  TRUE  TRUE   FALSE  TRUE
## 8        TRUE   TRUE    TRUE  TRUE  TRUE  TRUE  TRUE    TRUE  TRUE

## Start:  AIC=-58.32
## lpsa ~ lcavol + lweight + age + lbph + svi + lcp + gleason + 
##     pgg45
## 
##           Df Sum of Sq    RSS     AIC
## - gleason  1    0.0412 44.204 -60.231
## - pgg45    1    0.5258 44.689 -59.174
## - lcp      1    0.6740 44.837 -58.853
## <none>                 44.163 -58.322
## - age      1    1.5503 45.713 -56.975
## - lbph     1    1.6835 45.847 -56.693
## - lweight  1    3.5861 47.749 -52.749
## - svi      1    4.9355 49.099 -50.046
## - lcavol   1   22.3721 66.535 -20.567
## 
## Step:  AIC=-60.23
## lpsa ~ lcavol + lweight + age + lbph + svi + lcp + pgg45
## 
##           Df Sum of Sq    RSS     AIC
## - lcp      1    0.6623 44.867 -60.789
## <none>                 44.204 -60.231
## - pgg45    1    1.1920 45.396 -59.650
## - age      1    1.5166 45.721 -58.959
## - lbph     1    1.7053 45.910 -58.560
## - lweight  1    3.5462 47.750 -54.746
## - svi      1    4.8984 49.103 -52.037
## - lcavol   1   23.5039 67.708 -20.872
## 
## Step:  AIC=-60.79
## lpsa ~ lcavol + lweight + age + lbph + svi + pgg45
## 
##           Df Sum of Sq    RSS     AIC
## - pgg45    1    0.6590 45.526 -61.374
## <none>                 44.867 -60.789
## - age      1    1.2649 46.131 -60.092
## - lbph     1    1.6465 46.513 -59.293
## - lweight  1    3.5647 48.431 -55.373
## - svi      1    4.2503 49.117 -54.009
## - lcavol   1   25.4189 70.285 -19.248
## 
## Step:  AIC=-61.37
## lpsa ~ lcavol + lweight + age + lbph + svi
## 
##           Df Sum of Sq    RSS     AIC
## <none>                 45.526 -61.374
## - age      1    0.9592 46.485 -61.352
## - lbph     1    1.8568 47.382 -59.497
## - lweight  1    3.2251 48.751 -56.735
## - svi      1    5.9517 51.477 -51.456
## - lcavol   1   28.7665 74.292 -15.871
## 
## Call:
## lm(formula = lpsa ~ lcavol + lweight + age + lbph + svi, data = prostate)
## 
## Coefficients:
## (Intercept)       lcavol      lweight          age         lbph  
##     0.95100      0.56561      0.42369     -0.01489      0.11184  
##         svi  
##     0.72095

Best model is: lm(formula = lpsa ~ lcavol + lweight + age + lbph + svi, data = prostate), with the lowest AIC: -61.37