## Installing package into '/storage01/users/izf381/R/x86_64-redhat-linux-gnu-library/3.6'
## (as 'lib' is unspecified)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
## recode
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Loading required package: ggplot2
## Registered S3 methods overwritten by 'ggplot2':
## method from
## [.quosures rlang
## c.quosures rlang
## print.quosures rlang
## Loading required package: ggpubr
## Loading required package: magrittr
## Call: survfit(formula = Surv(time = age_transition1, event = transition1) ~
## 1, data = addhealth)
##
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 19 7945 6 0.999 0.000308 0.999 1.000
## 20 7939 16 0.997 0.000590 0.996 0.998
## 21 7923 29 0.994 0.000896 0.992 0.995
## 22 7894 62 0.986 0.001328 0.983 0.988
## 23 7832 92 0.974 0.001779 0.971 0.978
## 24 7740 89 0.963 0.002118 0.959 0.967
## 25 7650 20 0.960 0.002186 0.956 0.965
## 26 7597 8 0.959 0.002213 0.955 0.964
#### b. Hazard
## $time
## [1] 19.5 20.5 21.5 22.5 23.5 24.5 25.5
##
## $haz
## [1] 0.002017401 0.003666945 0.007885072 0.011816218 0.011565517 0.002621860
## [7] 0.001129844
##
## $var
## [1] 2.543692e-07 4.636724e-07 1.002817e-06 1.517659e-06 1.502952e-06
## [6] 3.437087e-07 1.597407e-07
#### c. Cumulative Hazard
## time haz var
## 1 19.5 0.002017401 2.543692e-07
## 2 20.5 0.003666945 4.636724e-07
## 3 21.5 0.007885072 1.002817e-06
## 4 22.5 0.011816218 1.517659e-06
## 5 23.5 0.011565517 1.502952e-06
## 6 24.5 0.002621860 3.437087e-07
## 7 25.5 0.001129844 1.597407e-07
## Call: survfit(formula = Surv(age_transition1, transition1) ~ 1, data = addhealth)
##
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 19 7945 6 0.999 0.000308 0.999 1.000
## 20 7939 16 0.997 0.000590 0.996 0.998
## 21 7923 29 0.994 0.000896 0.992 0.995
## 22 7894 62 0.986 0.001328 0.983 0.988
## 23 7832 92 0.974 0.001779 0.971 0.978
## 24 7740 89 0.963 0.002118 0.959 0.967
## 25 7650 20 0.960 0.002186 0.956 0.965
## 26 7597 8 0.959 0.002213 0.955 0.964
## Call: survfit(formula = Surv(age_transition1, transition1) ~ sexorient,
## data = addhealth)
##
## sexorient=a_straight
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 19 7695 6 0.999 0.000318 0.999 1.000
## 20 7689 16 0.997 0.000609 0.996 0.998
## 21 7673 28 0.994 0.000916 0.992 0.995
## 22 7645 60 0.986 0.001353 0.983 0.988
## 23 7585 88 0.974 0.001805 0.971 0.978
## 24 7497 87 0.963 0.002153 0.959 0.967
## 25 7409 20 0.960 0.002224 0.956 0.965
## 26 7357 8 0.959 0.002252 0.955 0.964
##
## sexorient=b_bisexual
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 22 131 1 0.992 0.0076 0.978 1
## 23 130 1 0.985 0.0107 0.964 1
## 24 129 1 0.977 0.0131 0.952 1
##
## sexorient=c_LGB
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 21 119 1 0.992 0.00837 0.975 1.000
## 22 118 1 0.983 0.01178 0.960 1.000
## 23 117 3 0.958 0.01839 0.923 0.995
## 24 114 1 0.950 0.02006 0.911 0.990
## observed expected o-e
## a_straight 313 311.858997 1.141003
## b_bisexual 3 5.358724 -2.358724
## c_LGB 6 4.782279 1.217721
## Call: survfit(formula = Surv(time = age_transition1, event = transition1) ~
## sexorient + sex, data = addhealth)
##
## sexorient=a_straight, sex=a_male
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 19 3543 4 0.999 0.000564 0.998 1.000
## 20 3539 3 0.998 0.000746 0.997 0.999
## 21 3536 13 0.994 0.001259 0.992 0.997
## 22 3523 30 0.986 0.001982 0.982 0.990
## 23 3493 39 0.975 0.002629 0.970 0.980
## 24 3454 33 0.966 0.003063 0.960 0.972
## 25 3421 11 0.962 0.003193 0.956 0.969
## 26 3404 6 0.961 0.003262 0.954 0.967
##
## sexorient=a_straight, sex=b_female
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 19 4152 2 1.000 0.000341 0.999 1.000
## 20 4150 13 0.996 0.000931 0.995 0.998
## 21 4137 15 0.993 0.001314 0.990 0.995
## 22 4122 30 0.986 0.001852 0.982 0.989
## 23 4092 49 0.974 0.002481 0.969 0.979
## 24 4043 54 0.961 0.003014 0.955 0.967
## 25 3988 9 0.959 0.003093 0.953 0.965
## 26 3953 2 0.958 0.003110 0.952 0.964
##
## sexorient=b_bisexual, sex=a_male
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 23 21 1 0.952 0.0465 0.866 1
## 24 20 1 0.905 0.0641 0.788 1
##
## sexorient=b_bisexual, sex=b_female
## time n.risk n.event survival std.err
## 2.20e+01 1.10e+02 1.00e+00 9.91e-01 9.05e-03
## lower 95% CI upper 95% CI
## 9.73e-01 1.00e+00
##
## sexorient=c_LGB, sex=a_male
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 21 75 1 0.987 0.0132 0.961 1.000
## 23 74 3 0.947 0.0259 0.897 0.999
## 24 71 1 0.933 0.0288 0.879 0.992
##
## sexorient=c_LGB, sex=b_female
## time n.risk n.event survival std.err
## 22.0000 44.0000 1.0000 0.9773 0.0225
## lower 95% CI upper 95% CI
## 0.9342 1.0000
#Part B #Parametric models ### 1) Carry out the following analysis: Define your outcome as in part A. Also consider what covariates are hypothesized to affect the outcome variable. Define these and construct a parametric model for your outcome.
####The outcome variable is the transition of non-U.S. citizen in Wave 3 to naturalized United States citizen in Wave 4 ####The predictior variables are chosen based on previous literature and what may effect gaining citizenship for LGB individuals. The variables are sex, race/ethicity, sexual orientation, education, income, married, friendships, religiosity, parent/caretaker love, depression, insurance status, general health, mentor, volunteer
## Loading required package: grid
## Loading required package: Matrix
##
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
##
## dotchart
## Stratified 1 - level Cluster Sampling design (with replacement)
## With (132) clusters.
## svydesign(ids = ~psuscid, strata = ~region, weights = ~GSWGT4,
## data = addhealth, nest = T)
## Call:
## svycoxph(formula = Surv(time = age_transition1, event = transition1) ~
## sex + sexorient, design = des2)
##
## n= 7945, number of events= 322
##
## coef exp(coef) se(coef) z Pr(>|z|)
## sexb_female -0.08028 0.92286 0.23034 -0.349 0.7275
## sexorientb_bisexual -1.48861 0.22569 0.89110 -1.671 0.0948 .
## sexorientc_LGB 0.67177 1.95771 0.55298 1.215 0.2244
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## sexb_female 0.9229 1.0836 0.58758 1.449
## sexorientb_bisexual 0.2257 4.4309 0.03936 1.294
## sexorientc_LGB 1.9577 0.5108 0.66229 5.787
##
## Concordance= 0.517 (se = 0.023 )
## Likelihood ratio test= NA on 3 df, p=NA
## Wald test = 4.6 on 3 df, p=0.2
## Score (logrank) test = NA on 3 df, p=NA
## Stratified 1 - level Cluster Sampling design (with replacement)
## With (132) clusters.
## svydesign(ids = ~psuscid, strata = ~region, weights = ~GSWGT4,
## data = addhealth, nest = T)
## Call:
## svycoxph(formula = Surv(time = age_transition1, event = transition1) ~
## sex + racethnic + sexorient + educ + incomeW4 + marriedW4a +
## friendships + church.attend + unloved_bycaretakerW4 +
## depressionW4 + insurance_status + general_health + mentor +
## volunteer, design = des2)
##
## n= 7945, number of events= 322
##
## coef exp(coef) se(coef) z
## sexb_female -0.12886 0.87909 0.22662 -0.569
## racethnicb-nhblack -0.54969 0.57713 0.53100 -1.035
## racethnicc-hispanic 2.65967 14.29161 0.34787 7.645
## racethnicd-asian 3.65356 38.61176 0.31206 11.708
## racethnice-native_american 0.62556 1.86928 1.15041 0.544
## racethnicf-other 2.07231 7.94315 0.66720 3.106
## sexorientb_bisexual -0.77553 0.46046 0.92700 -0.837
## sexorientc_LGB 0.88024 2.41148 0.44145 1.994
## educb_highschool_grad 0.50054 1.64961 0.48516 1.032
## educc_college_bach 0.91013 2.48465 0.50954 1.786
## educd_college+ 1.52586 4.59909 0.54409 2.804
## incomeW4b_$15,000<$30,000 1.44367 4.23620 0.52677 2.741
## incomeW4c_$30,000<$50,000 0.95228 2.59162 0.48269 1.973
## incomeW4d_$50,000<$75,000 1.35427 3.87394 0.53631 2.525
## incomeW4e_$75,000<$100,000 1.52772 4.60766 0.53021 2.881
## incomeW4f_$100,000<$150,000 1.48554 4.41734 0.52407 2.835
## incomeW4g_$150,000+ 1.03380 2.81172 0.43035 2.402
## marriedW4ab_married -0.57154 0.56465 0.20538 -2.783
## friendshipsb_1or2 -0.31740 0.72804 0.55736 -0.569
## friendshipsc_3to9 -0.53338 0.58662 0.46819 -1.139
## friendshipsd_>10 -0.80679 0.44629 0.56068 -1.439
## church.attendb_once.week 0.45228 1.57189 0.25857 1.749
## church.attendc_2plus.week -0.09653 0.90798 0.38585 -0.250
## unloved_bycaretakerW4b_10+_times -0.21099 0.80978 0.24910 -0.847
## unloved_bycaretakerW4c_never -0.44985 0.63772 0.19710 -2.282
## depressionW4b_yes -0.79930 0.44964 0.33510 -2.385
## insurance_statusb_yes_insurance 0.05401 1.05550 0.24744 0.218
## general_healthpoor/bad 0.30088 1.35105 0.32373 0.929
## mentorb_yes -0.43363 0.64815 0.22844 -1.898
## volunteerb_yes 0.11127 1.11770 0.16095 0.691
## Pr(>|z|)
## sexb_female 0.56961
## racethnicb-nhblack 0.30058
## racethnicc-hispanic 2.08e-14 ***
## racethnicd-asian < 2e-16 ***
## racethnice-native_american 0.58660
## racethnicf-other 0.00190 **
## sexorientb_bisexual 0.40281
## sexorientc_LGB 0.04616 *
## educb_highschool_grad 0.30221
## educc_college_bach 0.07407 .
## educd_college+ 0.00504 **
## incomeW4b_$15,000<$30,000 0.00613 **
## incomeW4c_$30,000<$50,000 0.04851 *
## incomeW4d_$50,000<$75,000 0.01156 *
## incomeW4e_$75,000<$100,000 0.00396 **
## incomeW4f_$100,000<$150,000 0.00459 **
## incomeW4g_$150,000+ 0.01630 *
## marriedW4ab_married 0.00539 **
## friendshipsb_1or2 0.56904
## friendshipsc_3to9 0.25460
## friendshipsd_>10 0.15016
## church.attendb_once.week 0.08026 .
## church.attendc_2plus.week 0.80246
## unloved_bycaretakerW4b_10+_times 0.39699
## unloved_bycaretakerW4c_never 0.02247 *
## depressionW4b_yes 0.01707 *
## insurance_statusb_yes_insurance 0.82720
## general_healthpoor/bad 0.35267
## mentorb_yes 0.05767 .
## volunteerb_yes 0.48935
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## sexb_female 0.8791 1.13753 0.56382 1.3707
## racethnicb-nhblack 0.5771 1.73271 0.20384 1.6340
## racethnicc-hispanic 14.2916 0.06997 7.22720 28.2613
## racethnicd-asian 38.6118 0.02590 20.94563 71.1780
## racethnice-native_american 1.8693 0.53496 0.19608 17.8200
## racethnicf-other 7.9432 0.12589 2.14820 29.3705
## sexorientb_bisexual 0.4605 2.17175 0.07484 2.8330
## sexorientc_LGB 2.4115 0.41468 1.01512 5.7286
## educb_highschool_grad 1.6496 0.60621 0.63741 4.2692
## educc_college_bach 2.4846 0.40247 0.91526 6.7451
## educd_college+ 4.5991 0.21743 1.58323 13.3598
## incomeW4b_$15,000<$30,000 4.2362 0.23606 1.50865 11.8950
## incomeW4c_$30,000<$50,000 2.5916 0.38586 1.00625 6.6748
## incomeW4d_$50,000<$75,000 3.8739 0.25814 1.35409 11.0830
## incomeW4e_$75,000<$100,000 4.6077 0.21703 1.62991 13.0256
## incomeW4f_$100,000<$150,000 4.4173 0.22638 1.58151 12.3382
## incomeW4g_$150,000+ 2.8117 0.35565 1.20964 6.5356
## marriedW4ab_married 0.5647 1.77100 0.37754 0.8445
## friendshipsb_1or2 0.7280 1.37355 0.24419 2.1706
## friendshipsc_3to9 0.5866 1.70469 0.23433 1.4685
## friendshipsd_>10 0.4463 2.24070 0.14872 1.3393
## church.attendb_once.week 1.5719 0.63618 0.94695 2.6093
## church.attendc_2plus.week 0.9080 1.10134 0.42623 1.9343
## unloved_bycaretakerW4b_10+_times 0.8098 1.23490 0.49698 1.3195
## unloved_bycaretakerW4c_never 0.6377 1.56808 0.43337 0.9384
## depressionW4b_yes 0.4496 2.22399 0.23315 0.8672
## insurance_statusb_yes_insurance 1.0555 0.94742 0.64989 1.7143
## general_healthpoor/bad 1.3511 0.74016 0.71633 2.5482
## mentorb_yes 0.6482 1.54285 0.41421 1.0142
## volunteerb_yes 1.1177 0.89469 0.81531 1.5322
##
## Concordance= 0.864 (se = 0.019 )
## Likelihood ratio test= NA on 30 df, p=NA
## Wald test = 463.6 on 30 df, p=<2e-16
## Score (logrank) test = NA on 30 df, p=NA
## Response sexb_female :
##
## Call:
## lm(formula = sexb_female ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.5845 -0.5428 0.4321 0.4541 0.4827
##
## Coefficients:
## Estimate
## (Intercept) 0.27257
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.00852
## Std. Error
## (Intercept) 0.44741
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.01952
## t value
## (Intercept) 0.609
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.437
## Pr(>|t|)
## (Intercept) 0.543
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.663
##
## Residual standard error: 0.4992 on 320 degrees of freedom
## Multiple R-squared: 0.0005951, Adjusted R-squared: -0.002528
## F-statistic: 0.1905 on 1 and 320 DF, p-value: 0.6628
##
##
## Response racethnicb-nhblack :
##
## Call:
## lm(formula = `racethnicb-nhblack` ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.05529 -0.04626 -0.04358 -0.04043 0.96713
##
## Coefficients:
## Estimate
## (Intercept) -0.043359
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.002679
## Std. Error
## (Intercept) 0.183331
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.007998
## t value
## (Intercept) -0.237
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.335
## Pr(>|t|)
## (Intercept) 0.813
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.738
##
## Residual standard error: 0.2046 on 320 degrees of freedom
## Multiple R-squared: 0.0003506, Adjusted R-squared: -0.002773
## F-statistic: 0.1122 on 1 and 320 DF, p-value: 0.7379
##
##
## Response racethnicc-hispanic :
##
## Call:
## lm(formula = `racethnicc-hispanic` ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.2465 -0.2127 -0.2059 -0.1949 0.8160
##
## Coefficients:
## Estimate
## (Intercept) 0.05870
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.00547
## Std. Error
## (Intercept) 0.36552
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.01595
## t value
## (Intercept) 0.161
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.343
## Pr(>|t|)
## (Intercept) 0.873
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.732
##
## Residual standard error: 0.4079 on 320 degrees of freedom
## Multiple R-squared: 0.0003677, Adjusted R-squared: -0.002756
## F-statistic: 0.1177 on 1 and 320 DF, p-value: 0.7318
##
##
## Response racethnicd-asian :
##
## Call:
## lm(formula = `racethnicd-asian` ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.5641 -0.4963 -0.4189 0.5065 0.6243
##
## Coefficients:
## Estimate
## (Intercept) -0.19825
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.01239
## Std. Error
## (Intercept) 0.45257
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.01974
## t value
## (Intercept) -0.438
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.628
## Pr(>|t|)
## (Intercept) 0.662
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.531
##
## Residual standard error: 0.505 on 320 degrees of freedom
## Multiple R-squared: 0.00123, Adjusted R-squared: -0.001892
## F-statistic: 0.394 on 1 and 320 DF, p-value: 0.5307
##
##
## Response racethnice-native_american :
##
## Call:
## lm(formula = `racethnice-native_american` ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.00894 -0.00501 -0.00329 -0.00156 0.99499
##
## Coefficients:
## Estimate
## (Intercept) -0.039644
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.001725
## Std. Error
## (Intercept) 0.049973
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.002180
## t value
## (Intercept) -0.793
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.791
## Pr(>|t|)
## (Intercept) 0.428
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.429
##
## Residual standard error: 0.05576 on 320 degrees of freedom
## Multiple R-squared: 0.001954, Adjusted R-squared: -0.001165
## F-statistic: 0.6264 on 1 and 320 DF, p-value: 0.4293
##
##
## Response racethnicf-other :
##
## Call:
## lm(formula = `racethnicf-other` ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.04567 -0.02869 -0.02412 -0.01955 0.98114
##
## Coefficients:
## Estimate
## (Intercept) 0.105957
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.004567
## Std. Error
## (Intercept) 0.139841
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.006100
## t value
## (Intercept) 0.758
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.749
## Pr(>|t|)
## (Intercept) 0.449
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.455
##
## Residual standard error: 0.156 on 320 degrees of freedom
## Multiple R-squared: 0.001749, Adjusted R-squared: -0.001371
## F-statistic: 0.5606 on 1 and 320 DF, p-value: 0.4546
##
##
## Response sexorientb_bisexual :
##
## Call:
## lm(formula = sexorientb_bisexual ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.01636 -0.01163 -0.00953 -0.00743 0.99064
##
## Coefficients:
## Estimate
## (Intercept) -0.042485
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.002097
## Std. Error
## (Intercept) 0.086325
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.003766
## t value
## (Intercept) -0.492
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.557
## Pr(>|t|)
## (Intercept) 0.623
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.578
##
## Residual standard error: 0.09633 on 320 degrees of freedom
## Multiple R-squared: 0.0009682, Adjusted R-squared: -0.002154
## F-statistic: 0.3101 on 1 and 320 DF, p-value: 0.578
##
##
## Response sexorientc_LGB :
##
## Call:
## lm(formula = sexorientc_LGB ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.03535 -0.02315 -0.01922 -0.01516 0.98484
##
## Coefficients:
## Estimate
## (Intercept) -0.103022
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.004064
## Std. Error
## (Intercept) 0.121408
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.005296
## t value
## (Intercept) -0.849
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.767
## Pr(>|t|)
## (Intercept) 0.397
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.443
##
## Residual standard error: 0.1355 on 320 degrees of freedom
## Multiple R-squared: 0.001837, Adjusted R-squared: -0.001282
## F-statistic: 0.5889 on 1 and 320 DF, p-value: 0.4434
##
##
## Response educb_highschool_grad :
##
## Call:
## lm(formula = educb_highschool_grad ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.5242 -0.4873 -0.4576 0.5127 0.5525
##
## Coefficients:
## Estimate
## (Intercept) 0.21739
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.00859
## Std. Error
## (Intercept) 0.44815
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.01955
## t value
## (Intercept) 0.485
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.439
## Pr(>|t|)
## (Intercept) 0.628
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.661
##
## Residual standard error: 0.5001 on 320 degrees of freedom
## Multiple R-squared: 0.000603, Adjusted R-squared: -0.00252
## F-statistic: 0.1931 on 1 and 320 DF, p-value: 0.6607
##
##
## Response educc_college_bach :
##
## Call:
## lm(formula = educc_college_bach ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.3813 -0.3139 -0.2872 0.6640 0.7791
##
## Coefficients:
## Estimate
## (Intercept) -0.47221
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.02211
## Std. Error
## (Intercept) 0.41194
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.01797
## t value
## (Intercept) -1.146
## des2$variables$age_transition1[des2$variables$transition1 == 1] 1.230
## Pr(>|t|)
## (Intercept) 0.253
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.220
##
## Residual standard error: 0.4597 on 320 degrees of freedom
## Multiple R-squared: 0.004707, Adjusted R-squared: 0.001597
## F-statistic: 1.513 on 1 and 320 DF, p-value: 0.2195
##
##
## Response educd_college+ :
##
## Call:
## lm(formula = `educd_college+` ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.2089 -0.1808 -0.1740 -0.1641 0.8436
##
## Coefficients:
## Estimate
## (Intercept) -0.139803
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.004386
## Std. Error
## (Intercept) 0.342857
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.014957
## t value
## (Intercept) -0.408
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.293
## Pr(>|t|)
## (Intercept) 0.684
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.770
##
## Residual standard error: 0.3826 on 320 degrees of freedom
## Multiple R-squared: 0.0002687, Adjusted R-squared: -0.002855
## F-statistic: 0.08599 on 1 and 320 DF, p-value: 0.7695
##
##
## Response incomeW4b_$15,000<$30,000 :
##
## Call:
## lm(formula = `incomeW4b_$15,000<$30,000` ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.09695 -0.08596 -0.08110 -0.07541 0.93432
##
## Coefficients:
## Estimate
## (Intercept) -0.137010
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.004865
## Std. Error
## (Intercept) 0.244856
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.010682
## t value
## (Intercept) -0.560
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.455
## Pr(>|t|)
## (Intercept) 0.576
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.649
##
## Residual standard error: 0.2732 on 320 degrees of freedom
## Multiple R-squared: 0.0006479, Adjusted R-squared: -0.002475
## F-statistic: 0.2075 on 1 and 320 DF, p-value: 0.6491
##
##
## Response incomeW4c_$30,000<$50,000 :
##
## Call:
## lm(formula = `incomeW4c_$30,000<$50,000` ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.1619 -0.1476 -0.1418 -0.1350 0.8711
##
## Coefficients:
## Estimate
## (Intercept) -0.076776
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.002635
## Std. Error
## (Intercept) 0.314564
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.013723
## t value
## (Intercept) -0.244
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.192
## Pr(>|t|)
## (Intercept) 0.807
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.848
##
## Residual standard error: 0.351 on 320 degrees of freedom
## Multiple R-squared: 0.0001152, Adjusted R-squared: -0.003009
## F-statistic: 0.03688 on 1 and 320 DF, p-value: 0.8478
##
##
## Response incomeW4d_$50,000<$75,000 :
##
## Call:
## lm(formula = `incomeW4d_$50,000<$75,000` ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.2992 -0.2598 -0.2477 0.7118 0.7671
##
## Coefficients:
## Estimate
## (Intercept) 0.077298
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.004017
## Std. Error
## (Intercept) 0.391807
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.017092
## t value
## (Intercept) 0.197
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.235
## Pr(>|t|)
## (Intercept) 0.844
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.814
##
## Residual standard error: 0.4372 on 320 degrees of freedom
## Multiple R-squared: 0.0001726, Adjusted R-squared: -0.002952
## F-statistic: 0.05523 on 1 and 320 DF, p-value: 0.8144
##
##
## Response incomeW4e_$75,000<$100,000 :
##
## Call:
## lm(formula = `incomeW4e_$75,000<$100,000` ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.2248 -0.2152 -0.2044 -0.1882 0.8207
##
## Coefficients:
## Estimate
## (Intercept) -0.07020
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.00285
## Std. Error
## (Intercept) 0.36488
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.01592
## t value
## (Intercept) -0.192
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.179
## Pr(>|t|)
## (Intercept) 0.848
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.858
##
## Residual standard error: 0.4072 on 320 degrees of freedom
## Multiple R-squared: 0.0001002, Adjusted R-squared: -0.003025
## F-statistic: 0.03205 on 1 and 320 DF, p-value: 0.858
##
##
## Response incomeW4f_$100,000<$150,000 :
##
## Call:
## lm(formula = `incomeW4f_$100,000<$150,000` ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.2624 -0.2100 -0.1912 -0.1684 0.8606
##
## Coefficients:
## Estimate
## (Intercept) 0.35130
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.01450
## Std. Error
## (Intercept) 0.36045
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.01572
## t value
## (Intercept) 0.975
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.922
## Pr(>|t|)
## (Intercept) 0.330
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.357
##
## Residual standard error: 0.4022 on 320 degrees of freedom
## Multiple R-squared: 0.002651, Adjusted R-squared: -0.0004655
## F-statistic: 0.8506 on 1 and 320 DF, p-value: 0.3571
##
##
## Response incomeW4g_$150,000+ :
##
## Call:
## lm(formula = `incomeW4g_$150,000+` ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.13838 -0.11354 -0.10282 -0.09207 0.92934
##
## Coefficients:
## Estimate
## (Intercept) -0.20593
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.01072
## Std. Error
## (Intercept) 0.27227
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.01188
## t value
## (Intercept) -0.756
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.903
## Pr(>|t|)
## (Intercept) 0.450
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.367
##
## Residual standard error: 0.3038 on 320 degrees of freedom
## Multiple R-squared: 0.00254, Adjusted R-squared: -0.0005771
## F-statistic: 0.8148 on 1 and 320 DF, p-value: 0.3674
##
##
## Response marriedW4ab_married :
##
## Call:
## lm(formula = marriedW4ab_married ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.6181 -0.4588 -0.3595 0.5345 0.7257
##
## Coefficients:
## Estimate
## (Intercept) -0.96459
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.04458
## Std. Error
## (Intercept) 0.44523
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.01942
## t value
## (Intercept) -2.167
## des2$variables$age_transition1[des2$variables$transition1 == 1] 2.295
## Pr(>|t|)
## (Intercept) 0.0310 *
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.0224 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4968 on 320 degrees of freedom
## Multiple R-squared: 0.0162, Adjusted R-squared: 0.01312
## F-statistic: 5.268 on 1 and 320 DF, p-value: 0.02236
##
##
## Response friendshipsb_1or2 :
##
## Call:
## lm(formula = friendshipsb_1or2 ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.2127 -0.1853 -0.1768 -0.1658 0.8408
##
## Coefficients:
## Estimate
## (Intercept) -0.176335
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.006514
## Std. Error
## (Intercept) 0.345086
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.015054
## t value
## (Intercept) -0.511
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.433
## Pr(>|t|)
## (Intercept) 0.610
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.666
##
## Residual standard error: 0.3851 on 320 degrees of freedom
## Multiple R-squared: 0.0005848, Adjusted R-squared: -0.002538
## F-statistic: 0.1872 on 1 and 320 DF, p-value: 0.6655
##
##
## Response friendshipsc_3to9 :
##
## Call:
## lm(formula = friendshipsc_3to9 ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7067 -0.6393 0.3281 0.3514 0.4059
##
## Coefficients:
## Estimate
## (Intercept) 0.37293
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.01629
## Std. Error
## (Intercept) 0.42654
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.01861
## t value
## (Intercept) 0.874
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.875
## Pr(>|t|)
## (Intercept) 0.383
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.382
##
## Residual standard error: 0.476 on 320 degrees of freedom
## Multiple R-squared: 0.002389, Adjusted R-squared: -0.0007287
## F-statistic: 0.7662 on 1 and 320 DF, p-value: 0.382
##
##
## Response friendshipsd_>10 :
##
## Call:
## lm(formula = `friendshipsd_>10` ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.1715 -0.1509 -0.1411 -0.1219 0.8896
##
## Coefficients:
## Estimate
## (Intercept) -0.185150
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.009814
## Std. Error
## (Intercept) 0.311500
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.013589
## t value
## (Intercept) -0.594
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.722
## Pr(>|t|)
## (Intercept) 0.553
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.471
##
## Residual standard error: 0.3476 on 320 degrees of freedom
## Multiple R-squared: 0.001627, Adjusted R-squared: -0.001493
## F-statistic: 0.5216 on 1 and 320 DF, p-value: 0.4707
##
##
## Response church.attendb_once.week :
##
## Call:
## lm(formula = church.attendb_once.week ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.1947 -0.1690 -0.1639 -0.1607 0.8470
##
## Coefficients:
## Estimate
## (Intercept) 0.027908
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.002376
## Std. Error
## (Intercept) 0.335653
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.014642
## t value
## (Intercept) 0.083
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.162
## Pr(>|t|)
## (Intercept) 0.934
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.871
##
## Residual standard error: 0.3745 on 320 degrees of freedom
## Multiple R-squared: 8.229e-05, Adjusted R-squared: -0.003042
## F-statistic: 0.02633 on 1 and 320 DF, p-value: 0.8712
##
##
## Response church.attendc_2plus.week :
##
## Call:
## lm(formula = church.attendc_2plus.week ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.10400 -0.06996 -0.05452 -0.03908 0.97536
##
## Coefficients:
## Estimate
## (Intercept) -0.359444
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.015444
## Std. Error
## (Intercept) 0.199851
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.008718
## t value
## (Intercept) -1.799
## des2$variables$age_transition1[des2$variables$transition1 == 1] 1.771
## Pr(>|t|)
## (Intercept) 0.0730 .
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.0774 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.223 on 320 degrees of freedom
## Multiple R-squared: 0.009711, Adjusted R-squared: 0.006616
## F-statistic: 3.138 on 1 and 320 DF, p-value: 0.07744
##
##
## Response unloved_bycaretakerW4b_10+_times :
##
## Call:
## lm(formula = `unloved_bycaretakerW4b_10+_times` ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.12458 -0.11039 -0.10434 -0.09764 0.91427
##
## Coefficients:
## Estimate
## (Intercept) -0.100186
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.004651
## Std. Error
## (Intercept) 0.276141
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.012046
## t value
## (Intercept) -0.363
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.386
## Pr(>|t|)
## (Intercept) 0.717
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.700
##
## Residual standard error: 0.3081 on 320 degrees of freedom
## Multiple R-squared: 0.0004656, Adjusted R-squared: -0.002658
## F-statistic: 0.1491 on 1 and 320 DF, p-value: 0.6997
##
##
## Response unloved_bycaretakerW4c_never :
##
## Call:
## lm(formula = unloved_bycaretakerW4c_never ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.5861 -0.4976 0.4047 0.5024 0.5576
##
## Coefficients:
## Estimate
## (Intercept) 0.49416
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.01840
## Std. Error
## (Intercept) 0.44956
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.01961
## t value
## (Intercept) 1.099
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.938
## Pr(>|t|)
## (Intercept) 0.273
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.349
##
## Residual standard error: 0.5016 on 320 degrees of freedom
## Multiple R-squared: 0.002744, Adjusted R-squared: -0.0003729
## F-statistic: 0.8803 on 1 and 320 DF, p-value: 0.3488
##
##
## Response depressionW4b_yes :
##
## Call:
## lm(formula = depressionW4b_yes ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.06511 -0.06288 -0.06224 -0.06108 0.94019
##
## Coefficients:
## Estimate
## (Intercept) -0.012711
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.000632
## Std. Error
## (Intercept) 0.216950
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.009464
## t value
## (Intercept) -0.059
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.067
## Pr(>|t|)
## (Intercept) 0.953
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.947
##
## Residual standard error: 0.2421 on 320 degrees of freedom
## Multiple R-squared: 1.394e-05, Adjusted R-squared: -0.003111
## F-statistic: 0.00446 on 1 and 320 DF, p-value: 0.9468
##
##
## Response insurance_statusb_yes_insurance :
##
## Call:
## lm(formula = insurance_statusb_yes_insurance ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.8660 0.1408 0.1474 0.1528 0.1721
##
## Coefficients:
## Estimate
## (Intercept) -0.077440
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.003054
## Std. Error
## (Intercept) 0.320079
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.013963
## t value
## (Intercept) -0.242
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.219
## Pr(>|t|)
## (Intercept) 0.809
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.827
##
## Residual standard error: 0.3572 on 320 degrees of freedom
## Multiple R-squared: 0.0001495, Adjusted R-squared: -0.002975
## F-statistic: 0.04784 on 1 and 320 DF, p-value: 0.827
##
##
## Response general_healthpoor/bad :
##
## Call:
## lm(formula = `general_healthpoor/bad` ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.10322 -0.10048 -0.09910 -0.09748 0.90282
##
## Coefficients:
## Estimate
## (Intercept) -0.0073978
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.0002799
## Std. Error
## (Intercept) 0.2689020
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.0117305
## t value
## (Intercept) -0.028
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.024
## Pr(>|t|)
## (Intercept) 0.978
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.981
##
## Residual standard error: 0.3001 on 320 degrees of freedom
## Multiple R-squared: 1.779e-06, Adjusted R-squared: -0.003123
## F-statistic: 0.0005694 on 1 and 320 DF, p-value: 0.981
##
##
## Response mentorb_yes :
##
## Call:
## lm(formula = mentorb_yes ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7124 -0.6796 0.3056 0.3173 0.3428
##
## Coefficients:
## Estimate
## (Intercept) -0.181606
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.007408
## Std. Error
## (Intercept) 0.416932
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.018188
## t value
## (Intercept) -0.436
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.407
## Pr(>|t|)
## (Intercept) 0.663
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.684
##
## Residual standard error: 0.4652 on 320 degrees of freedom
## Multiple R-squared: 0.0005182, Adjusted R-squared: -0.002605
## F-statistic: 0.1659 on 1 and 320 DF, p-value: 0.684
##
##
## Response volunteerb_yes :
##
## Call:
## lm(formula = volunteerb_yes ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.5544 -0.4980 0.4433 0.4969 0.5423
##
## Coefficients:
## Estimate
## (Intercept) 0.27444
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.01284
## Std. Error
## (Intercept) 0.44831
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.01956
## t value
## (Intercept) 0.612
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.656
## Pr(>|t|)
## (Intercept) 0.541
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.512
##
## Residual standard error: 0.5002 on 320 degrees of freedom
## Multiple R-squared: 0.001345, Adjusted R-squared: -0.001776
## F-statistic: 0.4309 on 1 and 320 DF, p-value: 0.512
## rho chisq p
## sexb_female -0.11605 38.5118 5.44e-10
## racethnicb-nhblack 0.04713 3.9413 4.71e-02
## racethnicc-hispanic 0.03361 3.1250 7.71e-02
## racethnicd-asian 0.09604 24.2164 8.61e-07
## racethnice-native_american 0.02292 1.0427 3.07e-01
## racethnicf-other -0.06005 8.8977 2.86e-03
## sexorientb_bisexual 0.00708 0.0986 7.54e-01
## sexorientc_LGB -0.01171 0.1808 6.71e-01
## educb_highschool_grad 0.11950 38.8473 4.58e-10
## educc_college_bach 0.08438 17.2918 3.21e-05
## educd_college+ 0.13313 49.2969 2.20e-12
## incomeW4b_$15,000<$30,000 0.11680 19.3426 1.09e-05
## incomeW4c_$30,000<$50,000 0.07209 7.3298 6.78e-03
## incomeW4d_$50,000<$75,000 0.06417 6.4491 1.11e-02
## incomeW4e_$75,000<$100,000 0.05776 4.4264 3.54e-02
## incomeW4f_$100,000<$150,000 0.09151 12.2103 4.75e-04
## incomeW4g_$150,000+ 0.08602 7.5803 5.90e-03
## marriedW4ab_married -0.21585 103.5136 2.59e-24
## friendshipsb_1or2 0.17534 60.0803 9.11e-15
## friendshipsc_3to9 0.15045 43.7214 3.79e-11
## friendshipsd_>10 0.13533 40.1325 2.37e-10
## church.attendb_once.week 0.09456 26.1975 3.08e-07
## church.attendc_2plus.week 0.17536 50.7624 1.04e-12
## unloved_bycaretakerW4b_10+_times -0.06982 4.5790 3.24e-02
## unloved_bycaretakerW4c_never -0.16953 75.9162 2.96e-18
## depressionW4b_yes 0.12471 16.8199 4.11e-05
## insurance_statusb_yes_insurance -0.16382 49.5440 1.94e-12
## general_healthpoor/bad -0.12790 47.8091 4.70e-12
## mentorb_yes -0.00649 0.0689 7.93e-01
## volunteerb_yes -0.15561 31.2885 2.22e-08
## GLOBAL NA 230.3985 8.81e-33
###Martingale residuals
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Stratified 1 - level Cluster Sampling design (with replacement)
## With (132) clusters.
## svydesign(ids = ~psuscid, strata = ~region, weights = ~GSWGT4,
## data = addhealth, nest = T)
## Call:
## svycoxph(formula = Surv(time = age_transition1, event = transition1) ~
## strata(sexorient) + sex + racethnic + educ + incomeW4 + marriedW4a +
## friendships + church.attend + unloved_bycaretakerW4 +
## depressionW4 + insurance_status + general_health + mentor +
## volunteer, design = des2)
##
## n= 7945, number of events= 322
##
## coef exp(coef) se(coef) z
## sexb_female -0.12676 0.88094 0.22730 -0.558
## racethnicb-nhblack -0.54776 0.57825 0.53088 -1.032
## racethnicc-hispanic 2.66254 14.33263 0.34729 7.667
## racethnicd-asian 3.64873 38.42596 0.31185 11.700
## racethnice-native_american 0.63428 1.88566 1.14525 0.554
## racethnicf-other 2.07505 7.96492 0.66639 3.114
## educb_highschool_grad 0.49799 1.64542 0.48585 1.025
## educc_college_bach 0.91258 2.49074 0.50811 1.796
## educd_college+ 1.52587 4.59914 0.54418 2.804
## incomeW4b_$15,000<$30,000 1.41935 4.13442 0.52627 2.697
## incomeW4c_$30,000<$50,000 0.94458 2.57174 0.48028 1.967
## incomeW4d_$50,000<$75,000 1.34472 3.83713 0.53381 2.519
## incomeW4e_$75,000<$100,000 1.51927 4.56888 0.52750 2.880
## incomeW4f_$100,000<$150,000 1.47862 4.38687 0.52235 2.831
## incomeW4g_$150,000+ 1.02727 2.79342 0.42947 2.392
## marriedW4ab_married -0.57187 0.56447 0.20520 -2.787
## friendshipsb_1or2 -0.31783 0.72773 0.55795 -0.570
## friendshipsc_3to9 -0.53307 0.58680 0.46824 -1.138
## friendshipsd_>10 -0.80223 0.44833 0.55993 -1.433
## church.attendb_once.week 0.45418 1.57489 0.25769 1.763
## church.attendc_2plus.week -0.09724 0.90734 0.38562 -0.252
## unloved_bycaretakerW4b_10+_times -0.20859 0.81173 0.24889 -0.838
## unloved_bycaretakerW4c_never -0.44837 0.63867 0.19776 -2.267
## depressionW4b_yes -0.79798 0.45024 0.33448 -2.386
## insurance_statusb_yes_insurance 0.04969 1.05095 0.24657 0.202
## general_healthpoor/bad 0.30262 1.35340 0.32449 0.933
## mentorb_yes -0.42526 0.65360 0.22957 -1.852
## volunteerb_yes 0.10515 1.11087 0.16044 0.655
## Pr(>|z|)
## sexb_female 0.57706
## racethnicb-nhblack 0.30217
## racethnicc-hispanic 1.77e-14 ***
## racethnicd-asian < 2e-16 ***
## racethnice-native_american 0.57969
## racethnicf-other 0.00185 **
## educb_highschool_grad 0.30537
## educc_college_bach 0.07249 .
## educd_college+ 0.00505 **
## incomeW4b_$15,000<$30,000 0.00700 **
## incomeW4c_$30,000<$50,000 0.04922 *
## incomeW4d_$50,000<$75,000 0.01177 *
## incomeW4e_$75,000<$100,000 0.00398 **
## incomeW4f_$100,000<$150,000 0.00464 **
## incomeW4g_$150,000+ 0.01676 *
## marriedW4ab_married 0.00532 **
## friendshipsb_1or2 0.56892
## friendshipsc_3to9 0.25493
## friendshipsd_>10 0.15193
## church.attendb_once.week 0.07798 .
## church.attendc_2plus.week 0.80091
## unloved_bycaretakerW4b_10+_times 0.40198
## unloved_bycaretakerW4c_never 0.02337 *
## depressionW4b_yes 0.01705 *
## insurance_statusb_yes_insurance 0.84028
## general_healthpoor/bad 0.35102
## mentorb_yes 0.06396 .
## volunteerb_yes 0.51224
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## sexb_female 0.8809 1.13514 0.5643 1.3754
## racethnicb-nhblack 0.5782 1.72937 0.2043 1.6368
## racethnicc-hispanic 14.3326 0.06977 7.2563 28.3099
## racethnicd-asian 38.4260 0.02602 20.8533 70.8068
## racethnice-native_american 1.8857 0.53032 0.1998 17.7950
## racethnicf-other 7.9649 0.12555 2.1575 29.4043
## educb_highschool_grad 1.6454 0.60775 0.6349 4.2641
## educc_college_bach 2.4907 0.40149 0.9201 6.7426
## educd_college+ 4.5991 0.21743 1.5830 13.3623
## incomeW4b_$15,000<$30,000 4.1344 0.24187 1.4738 11.5979
## incomeW4c_$30,000<$50,000 2.5717 0.38884 1.0033 6.5924
## incomeW4d_$50,000<$75,000 3.8371 0.26061 1.3478 10.9242
## incomeW4e_$75,000<$100,000 4.5689 0.21887 1.6248 12.8475
## incomeW4f_$100,000<$150,000 4.3869 0.22795 1.5759 12.2119
## incomeW4g_$150,000+ 2.7934 0.35798 1.2038 6.4819
## marriedW4ab_married 0.5645 1.77157 0.3776 0.8439
## friendshipsb_1or2 0.7277 1.37414 0.2438 2.1722
## friendshipsc_3to9 0.5868 1.70416 0.2344 1.4691
## friendshipsd_>10 0.4483 2.23052 0.1496 1.3434
## church.attendb_once.week 1.5749 0.63497 0.9504 2.6097
## church.attendc_2plus.week 0.9073 1.10213 0.4261 1.9320
## unloved_bycaretakerW4b_10+_times 0.8117 1.23194 0.4984 1.3221
## unloved_bycaretakerW4c_never 0.6387 1.56575 0.4335 0.9410
## depressionW4b_yes 0.4502 2.22104 0.2337 0.8673
## insurance_statusb_yes_insurance 1.0509 0.95152 0.6482 1.7040
## general_healthpoor/bad 1.3534 0.73888 0.7165 2.5564
## mentorb_yes 0.6536 1.52999 0.4168 1.0250
## volunteerb_yes 1.1109 0.90019 0.8111 1.5214
##
## Concordance= 0.863 (se = 0.019 )
## Likelihood ratio test= NA on 28 df, p=NA
## Wald test = 426.1 on 28 df, p=<2e-16
## Score (logrank) test = NA on 28 df, p=NA
## Stratified 1 - level Cluster Sampling design (with replacement)
## With (132) clusters.
## svydesign(ids = ~psuscid, strata = ~region, weights = ~GSWGT4,
## data = addhealth, nest = T)
## Call:
## svycoxph(formula = Surv(time = age_transition1, event = transition1) ~
## strata(sex) + sexorient + racethnic + educ + incomeW4 + marriedW4a +
## friendships + church.attend + unloved_bycaretakerW4 +
## depressionW4 + insurance_status + general_health + mentor +
## volunteer, design = des2)
##
## n= 7945, number of events= 322
##
## coef exp(coef) se(coef) z
## sexorientb_bisexual -0.76996 0.46303 0.92661 -0.831
## sexorientc_LGB 0.88135 2.41415 0.44595 1.976
## racethnicb-nhblack -0.54940 0.57730 0.53112 -1.034
## racethnicc-hispanic 2.65803 14.26811 0.34799 7.638
## racethnicd-asian 3.65298 38.58941 0.31127 11.736
## racethnice-native_american 0.62399 1.86636 1.15076 0.542
## racethnicf-other 2.07294 7.94817 0.66589 3.113
## educb_highschool_grad 0.50199 1.65200 0.48130 1.043
## educc_college_bach 0.91619 2.49975 0.50499 1.814
## educd_college+ 1.52827 4.61018 0.54199 2.820
## incomeW4b_$15,000<$30,000 1.44976 4.26209 0.52931 2.739
## incomeW4c_$30,000<$50,000 0.95994 2.61153 0.48575 1.976
## incomeW4d_$50,000<$75,000 1.36463 3.91427 0.53995 2.527
## incomeW4e_$75,000<$100,000 1.53502 4.64140 0.53312 2.879
## incomeW4f_$100,000<$150,000 1.49061 4.43980 0.52572 2.835
## incomeW4g_$150,000+ 1.03239 2.80777 0.42712 2.417
## marriedW4ab_married -0.56870 0.56626 0.20603 -2.760
## friendshipsb_1or2 -0.31808 0.72755 0.55785 -0.570
## friendshipsc_3to9 -0.53661 0.58473 0.46845 -1.145
## friendshipsd_>10 -0.80946 0.44510 0.56118 -1.442
## church.attendb_once.week 0.45077 1.56952 0.25853 1.744
## church.attendc_2plus.week -0.09707 0.90749 0.38604 -0.251
## unloved_bycaretakerW4b_10+_times -0.21180 0.80912 0.24885 -0.851
## unloved_bycaretakerW4c_never -0.45158 0.63662 0.19563 -2.308
## depressionW4b_yes -0.79792 0.45026 0.33545 -2.379
## insurance_statusb_yes_insurance 0.05570 1.05728 0.24632 0.226
## general_healthpoor/bad 0.29670 1.34541 0.32414 0.915
## mentorb_yes -0.43475 0.64743 0.22816 -1.905
## volunteerb_yes 0.11005 1.11633 0.16046 0.686
## Pr(>|z|)
## sexorientb_bisexual 0.40600
## sexorientc_LGB 0.04812 *
## racethnicb-nhblack 0.30094
## racethnicc-hispanic 2.2e-14 ***
## racethnicd-asian < 2e-16 ***
## racethnice-native_american 0.58765
## racethnicf-other 0.00185 **
## educb_highschool_grad 0.29696
## educc_college_bach 0.06964 .
## educd_college+ 0.00481 **
## incomeW4b_$15,000<$30,000 0.00616 **
## incomeW4c_$30,000<$50,000 0.04813 *
## incomeW4d_$50,000<$75,000 0.01149 *
## incomeW4e_$75,000<$100,000 0.00399 **
## incomeW4f_$100,000<$150,000 0.00458 **
## incomeW4g_$150,000+ 0.01564 *
## marriedW4ab_married 0.00578 **
## friendshipsb_1or2 0.56855
## friendshipsc_3to9 0.25201
## friendshipsd_>10 0.14918
## church.attendb_once.week 0.08123 .
## church.attendc_2plus.week 0.80146
## unloved_bycaretakerW4b_10+_times 0.39469
## unloved_bycaretakerW4c_never 0.02098 *
## depressionW4b_yes 0.01738 *
## insurance_statusb_yes_insurance 0.82110
## general_healthpoor/bad 0.36002
## mentorb_yes 0.05672 .
## volunteerb_yes 0.49282
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## sexorientb_bisexual 0.4630 2.15969 0.07531 2.8467
## sexorientc_LGB 2.4141 0.41422 1.00732 5.7857
## racethnicb-nhblack 0.5773 1.73221 0.20385 1.6349
## racethnicc-hispanic 14.2681 0.07009 7.21373 28.2210
## racethnicd-asian 38.5894 0.02591 20.96578 71.0273
## racethnice-native_american 1.8664 0.53580 0.19564 17.8041
## racethnicf-other 7.9482 0.12582 2.15506 29.3140
## educb_highschool_grad 1.6520 0.60533 0.64317 4.2432
## educc_college_bach 2.4998 0.40004 0.92907 6.7258
## educd_college+ 4.6102 0.21691 1.59359 13.3370
## incomeW4b_$15,000<$30,000 4.2621 0.23463 1.51032 12.0275
## incomeW4c_$30,000<$50,000 2.6115 0.38292 1.00792 6.7665
## incomeW4d_$50,000<$75,000 3.9143 0.25548 1.35845 11.2787
## incomeW4e_$75,000<$100,000 4.6414 0.21545 1.63252 13.1959
## incomeW4f_$100,000<$150,000 4.4398 0.22524 1.58441 12.4411
## incomeW4g_$150,000+ 2.8078 0.35615 1.21563 6.4852
## marriedW4ab_married 0.5663 1.76596 0.37813 0.8480
## friendshipsb_1or2 0.7275 1.37448 0.24379 2.1712
## friendshipsc_3to9 0.5847 1.71020 0.23346 1.4645
## friendshipsd_>10 0.4451 2.24669 0.14818 1.3370
## church.attendb_once.week 1.5695 0.63714 0.94560 2.6051
## church.attendc_2plus.week 0.9075 1.10194 0.42584 1.9339
## unloved_bycaretakerW4b_10+_times 0.8091 1.23591 0.49682 1.3177
## unloved_bycaretakerW4c_never 0.6366 1.57080 0.43387 0.9341
## depressionW4b_yes 0.4503 2.22092 0.23331 0.8690
## insurance_statusb_yes_insurance 1.0573 0.94582 0.65241 1.7134
## general_healthpoor/bad 1.3454 0.74327 0.71276 2.5396
## mentorb_yes 0.6474 1.54457 0.41398 1.0125
## volunteerb_yes 1.1163 0.89579 0.81510 1.5289
##
## Concordance= 0.864 (se = 0.018 )
## Likelihood ratio test= NA on 29 df, p=NA
## Wald test = 436.3 on 29 df, p=<2e-16
## Score (logrank) test = NA on 29 df, p=NA