## Installing package into '/storage01/users/izf381/R/x86_64-redhat-linux-gnu-library/3.6'
## (as 'lib' is unspecified)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
## Loading required package: carData
## 
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
## 
##     recode

Definitions

1) Define your event variable - The event variable is the transition of being a non-United States citizen to becoming a naturalized United States citizen between wave 3 and wave 4

2) Define a duration or time variable - If the age at becoming a naturalized United States citizen is censored, then the age of an individual at the date of interview is the censored age. If becomeing a naturalized United States citizen is not censored, the actual age of an individual when citizenship is gained is the time variable.

3) Define a censoring indicator - If someone has experienced the event the are assigned a “0”, if they experience an event they are assigned a “1”.

## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric

Descriptive estimates

## Loading required package: ggplot2
## Registered S3 methods overwritten by 'ggplot2':
##   method         from 
##   [.quosures     rlang
##   c.quosures     rlang
##   print.quosures rlang
## Loading required package: ggpubr
## Loading required package: magrittr

4) Estimate the following functions of survival time for that variable and plot them:

a. Survival

## Call: survfit(formula = Surv(time = age_transition1, event = transition1) ~ 
##     1, data = addhealth)
## 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##    19   7945       6    0.999 0.000308        0.999        1.000
##    20   7939      16    0.997 0.000590        0.996        0.998
##    21   7923      29    0.994 0.000896        0.992        0.995
##    22   7894      62    0.986 0.001328        0.983        0.988
##    23   7832      92    0.974 0.001779        0.971        0.978
##    24   7740      89    0.963 0.002118        0.959        0.967
##    25   7650      20    0.960 0.002186        0.956        0.965
##    26   7597       8    0.959 0.002213        0.955        0.964

#### b. Hazard

## $time
## [1] 19.5 20.5 21.5 22.5 23.5 24.5 25.5
## 
## $haz
## [1] 0.002017401 0.003666945 0.007885072 0.011816218 0.011565517 0.002621860
## [7] 0.001129844
## 
## $var
## [1] 2.543692e-07 4.636724e-07 1.002817e-06 1.517659e-06 1.502952e-06
## [6] 3.437087e-07 1.597407e-07

#### c. Cumulative Hazard

##   time         haz          var
## 1 19.5 0.002017401 2.543692e-07
## 2 20.5 0.003666945 4.636724e-07
## 3 21.5 0.007885072 1.002817e-06
## 4 22.5 0.011816218 1.517659e-06
## 5 23.5 0.011565517 1.502952e-06
## 6 24.5 0.002621860 3.437087e-07
## 7 25.5 0.001129844 1.597407e-07

5) Carry out the following analysis

a. Kaplan-Meier survival analysis of the outcome

## Call: survfit(formula = Surv(age_transition1, transition1) ~ 1, data = addhealth)
## 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##    19   7945       6    0.999 0.000308        0.999        1.000
##    20   7939      16    0.997 0.000590        0.996        0.998
##    21   7923      29    0.994 0.000896        0.992        0.995
##    22   7894      62    0.986 0.001328        0.983        0.988
##    23   7832      92    0.974 0.001779        0.971        0.978
##    24   7740      89    0.963 0.002118        0.959        0.967
##    25   7650      20    0.960 0.002186        0.956        0.965
##    26   7597       8    0.959 0.002213        0.955        0.964

b. Define a grouping variable, this can be dichotomous or categorical.

The grouping variabe is sexual orientation. It is categorial: heterosexual, bisexual, homosexual

c. Do you have a research hypothesis about the survival patterns for the levels of the categorical variable? State it. LGB individuals experience a higher rate of citizenship naturalization due to resiliance and support networks than heterosexual individuals.

d. Comparison of Kaplan-Meier survival across grouping variable in your data. Interpret your results. It would appear across all groups that the age at highest risk is around 23-24 years old.

Citizenship transition based on sexual orienation

## Call: survfit(formula = Surv(age_transition1, transition1) ~ sexorient, 
##     data = addhealth)
## 
##                 sexorient=a_straight 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##    19   7695       6    0.999 0.000318        0.999        1.000
##    20   7689      16    0.997 0.000609        0.996        0.998
##    21   7673      28    0.994 0.000916        0.992        0.995
##    22   7645      60    0.986 0.001353        0.983        0.988
##    23   7585      88    0.974 0.001805        0.971        0.978
##    24   7497      87    0.963 0.002153        0.959        0.967
##    25   7409      20    0.960 0.002224        0.956        0.965
##    26   7357       8    0.959 0.002252        0.955        0.964
## 
##                 sexorient=b_bisexual 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##    22    131       1    0.992  0.0076        0.978            1
##    23    130       1    0.985  0.0107        0.964            1
##    24    129       1    0.977  0.0131        0.952            1
## 
##                 sexorient=c_LGB 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##    21    119       1    0.992 0.00837        0.975        1.000
##    22    118       1    0.983 0.01178        0.960        1.000
##    23    117       3    0.958 0.01839        0.923        0.995
##    24    114       1    0.950 0.02006        0.911        0.990

##            observed   expected       o-e
## a_straight      313 311.858997  1.141003
## b_bisexual        3   5.358724 -2.358724
## c_LGB             6   4.782279  1.217721
## Call: survfit(formula = Surv(time = age_transition1, event = transition1) ~ 
##     sexorient + sex, data = addhealth)
## 
##                 sexorient=a_straight, sex=a_male   
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##    19   3543       4    0.999 0.000564        0.998        1.000
##    20   3539       3    0.998 0.000746        0.997        0.999
##    21   3536      13    0.994 0.001259        0.992        0.997
##    22   3523      30    0.986 0.001982        0.982        0.990
##    23   3493      39    0.975 0.002629        0.970        0.980
##    24   3454      33    0.966 0.003063        0.960        0.972
##    25   3421      11    0.962 0.003193        0.956        0.969
##    26   3404       6    0.961 0.003262        0.954        0.967
## 
##                 sexorient=a_straight, sex=b_female 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##    19   4152       2    1.000 0.000341        0.999        1.000
##    20   4150      13    0.996 0.000931        0.995        0.998
##    21   4137      15    0.993 0.001314        0.990        0.995
##    22   4122      30    0.986 0.001852        0.982        0.989
##    23   4092      49    0.974 0.002481        0.969        0.979
##    24   4043      54    0.961 0.003014        0.955        0.967
##    25   3988       9    0.959 0.003093        0.953        0.965
##    26   3953       2    0.958 0.003110        0.952        0.964
## 
##                 sexorient=b_bisexual, sex=a_male   
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##    23     21       1    0.952  0.0465        0.866            1
##    24     20       1    0.905  0.0641        0.788            1
## 
##                 sexorient=b_bisexual, sex=b_female 
##         time       n.risk      n.event     survival      std.err 
##     2.20e+01     1.10e+02     1.00e+00     9.91e-01     9.05e-03 
## lower 95% CI upper 95% CI 
##     9.73e-01     1.00e+00 
## 
##                 sexorient=c_LGB, sex=a_male   
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##    21     75       1    0.987  0.0132        0.961        1.000
##    23     74       3    0.947  0.0259        0.897        0.999
##    24     71       1    0.933  0.0288        0.879        0.992
## 
##                 sexorient=c_LGB, sex=b_female 
##         time       n.risk      n.event     survival      std.err 
##      22.0000      44.0000       1.0000       0.9773       0.0225 
## lower 95% CI upper 95% CI 
##       0.9342       1.0000

e. Plot the hazard function for the analysis for each level of the group variable (continued assignment from part d)

#Part B #Parametric models ### 1) Carry out the following analysis: Define your outcome as in part A. Also consider what covariates are hypothesized to affect the outcome variable. Define these and construct a parametric model for your outcome.
####The outcome variable is the transition of non-U.S. citizen in Wave 3 to naturalized United States citizen in Wave 4 ####The predictior variables are chosen based on previous literature and what may effect gaining citizenship for LGB individuals. The variables are sex, race/ethicity, sexual orientation, education, income, married, friendships, religiosity, parent/caretaker love, depression, insurance status, general health, mentor, volunteer

Fit the parametric model of your choosing to the data.

a. Did you choose an AFT or PH model and why?

I chose a Cox Proportional Hazard Model to analyzing the effect of several covariates after looking at the results of exponential, Weibull, and piecewise exponential models. The Weibull had the lowest AIC score and fit somewhat, but the Cox model proved to be better.

b. Justify what parametric distribution you choose

c. Carry out model fit diagnostics for the model

d. Include all main effects in the model

e. Test for an interaction between at least two of the predictors

f. Interpret your results and write them up

## Loading required package: grid
## Loading required package: Matrix
## 
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
## 
##     dotchart
## Stratified 1 - level Cluster Sampling design (with replacement)
## With (132) clusters.
## svydesign(ids = ~psuscid, strata = ~region, weights = ~GSWGT4, 
##     data = addhealth, nest = T)
## Call:
## svycoxph(formula = Surv(time = age_transition1, event = transition1) ~ 
##     sex + sexorient, design = des2)
## 
##   n= 7945, number of events= 322 
## 
##                         coef exp(coef) se(coef)      z Pr(>|z|)  
## sexb_female         -0.08028   0.92286  0.23034 -0.349   0.7275  
## sexorientb_bisexual -1.48861   0.22569  0.89110 -1.671   0.0948 .
## sexorientc_LGB       0.67177   1.95771  0.55298  1.215   0.2244  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                     exp(coef) exp(-coef) lower .95 upper .95
## sexb_female            0.9229     1.0836   0.58758     1.449
## sexorientb_bisexual    0.2257     4.4309   0.03936     1.294
## sexorientc_LGB         1.9577     0.5108   0.66229     5.787
## 
## Concordance= 0.517  (se = 0.023 )
## Likelihood ratio test= NA  on 3 df,   p=NA
## Wald test            = 4.6  on 3 df,   p=0.2
## Score (logrank) test = NA  on 3 df,   p=NA

## Stratified 1 - level Cluster Sampling design (with replacement)
## With (132) clusters.
## svydesign(ids = ~psuscid, strata = ~region, weights = ~GSWGT4, 
##     data = addhealth, nest = T)
## Call:
## svycoxph(formula = Surv(time = age_transition1, event = transition1) ~ 
##     sex + racethnic + sexorient + educ + incomeW4 + marriedW4a + 
##         friendships + church.attend + unloved_bycaretakerW4 + 
##         depressionW4 + insurance_status + general_health + mentor + 
##         volunteer, design = des2)
## 
##   n= 7945, number of events= 322 
## 
##                                      coef exp(coef) se(coef)      z
## sexb_female                      -0.12886   0.87909  0.22662 -0.569
## racethnicb-nhblack               -0.54969   0.57713  0.53100 -1.035
## racethnicc-hispanic               2.65967  14.29161  0.34787  7.645
## racethnicd-asian                  3.65356  38.61176  0.31206 11.708
## racethnice-native_american        0.62556   1.86928  1.15041  0.544
## racethnicf-other                  2.07231   7.94315  0.66720  3.106
## sexorientb_bisexual              -0.77553   0.46046  0.92700 -0.837
## sexorientc_LGB                    0.88024   2.41148  0.44145  1.994
## educb_highschool_grad             0.50054   1.64961  0.48516  1.032
## educc_college_bach                0.91013   2.48465  0.50954  1.786
## educd_college+                    1.52586   4.59909  0.54409  2.804
## incomeW4b_$15,000<$30,000         1.44367   4.23620  0.52677  2.741
## incomeW4c_$30,000<$50,000         0.95228   2.59162  0.48269  1.973
## incomeW4d_$50,000<$75,000         1.35427   3.87394  0.53631  2.525
## incomeW4e_$75,000<$100,000        1.52772   4.60766  0.53021  2.881
## incomeW4f_$100,000<$150,000       1.48554   4.41734  0.52407  2.835
## incomeW4g_$150,000+               1.03380   2.81172  0.43035  2.402
## marriedW4ab_married              -0.57154   0.56465  0.20538 -2.783
## friendshipsb_1or2                -0.31740   0.72804  0.55736 -0.569
## friendshipsc_3to9                -0.53338   0.58662  0.46819 -1.139
## friendshipsd_>10                 -0.80679   0.44629  0.56068 -1.439
## church.attendb_once.week          0.45228   1.57189  0.25857  1.749
## church.attendc_2plus.week        -0.09653   0.90798  0.38585 -0.250
## unloved_bycaretakerW4b_10+_times -0.21099   0.80978  0.24910 -0.847
## unloved_bycaretakerW4c_never     -0.44985   0.63772  0.19710 -2.282
## depressionW4b_yes                -0.79930   0.44964  0.33510 -2.385
## insurance_statusb_yes_insurance   0.05401   1.05550  0.24744  0.218
## general_healthpoor/bad            0.30088   1.35105  0.32373  0.929
## mentorb_yes                      -0.43363   0.64815  0.22844 -1.898
## volunteerb_yes                    0.11127   1.11770  0.16095  0.691
##                                  Pr(>|z|)    
## sexb_female                       0.56961    
## racethnicb-nhblack                0.30058    
## racethnicc-hispanic              2.08e-14 ***
## racethnicd-asian                  < 2e-16 ***
## racethnice-native_american        0.58660    
## racethnicf-other                  0.00190 ** 
## sexorientb_bisexual               0.40281    
## sexorientc_LGB                    0.04616 *  
## educb_highschool_grad             0.30221    
## educc_college_bach                0.07407 .  
## educd_college+                    0.00504 ** 
## incomeW4b_$15,000<$30,000         0.00613 ** 
## incomeW4c_$30,000<$50,000         0.04851 *  
## incomeW4d_$50,000<$75,000         0.01156 *  
## incomeW4e_$75,000<$100,000        0.00396 ** 
## incomeW4f_$100,000<$150,000       0.00459 ** 
## incomeW4g_$150,000+               0.01630 *  
## marriedW4ab_married               0.00539 ** 
## friendshipsb_1or2                 0.56904    
## friendshipsc_3to9                 0.25460    
## friendshipsd_>10                  0.15016    
## church.attendb_once.week          0.08026 .  
## church.attendc_2plus.week         0.80246    
## unloved_bycaretakerW4b_10+_times  0.39699    
## unloved_bycaretakerW4c_never      0.02247 *  
## depressionW4b_yes                 0.01707 *  
## insurance_statusb_yes_insurance   0.82720    
## general_healthpoor/bad            0.35267    
## mentorb_yes                       0.05767 .  
## volunteerb_yes                    0.48935    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                                  exp(coef) exp(-coef) lower .95 upper .95
## sexb_female                         0.8791    1.13753   0.56382    1.3707
## racethnicb-nhblack                  0.5771    1.73271   0.20384    1.6340
## racethnicc-hispanic                14.2916    0.06997   7.22720   28.2613
## racethnicd-asian                   38.6118    0.02590  20.94563   71.1780
## racethnice-native_american          1.8693    0.53496   0.19608   17.8200
## racethnicf-other                    7.9432    0.12589   2.14820   29.3705
## sexorientb_bisexual                 0.4605    2.17175   0.07484    2.8330
## sexorientc_LGB                      2.4115    0.41468   1.01512    5.7286
## educb_highschool_grad               1.6496    0.60621   0.63741    4.2692
## educc_college_bach                  2.4846    0.40247   0.91526    6.7451
## educd_college+                      4.5991    0.21743   1.58323   13.3598
## incomeW4b_$15,000<$30,000           4.2362    0.23606   1.50865   11.8950
## incomeW4c_$30,000<$50,000           2.5916    0.38586   1.00625    6.6748
## incomeW4d_$50,000<$75,000           3.8739    0.25814   1.35409   11.0830
## incomeW4e_$75,000<$100,000          4.6077    0.21703   1.62991   13.0256
## incomeW4f_$100,000<$150,000         4.4173    0.22638   1.58151   12.3382
## incomeW4g_$150,000+                 2.8117    0.35565   1.20964    6.5356
## marriedW4ab_married                 0.5647    1.77100   0.37754    0.8445
## friendshipsb_1or2                   0.7280    1.37355   0.24419    2.1706
## friendshipsc_3to9                   0.5866    1.70469   0.23433    1.4685
## friendshipsd_>10                    0.4463    2.24070   0.14872    1.3393
## church.attendb_once.week            1.5719    0.63618   0.94695    2.6093
## church.attendc_2plus.week           0.9080    1.10134   0.42623    1.9343
## unloved_bycaretakerW4b_10+_times    0.8098    1.23490   0.49698    1.3195
## unloved_bycaretakerW4c_never        0.6377    1.56808   0.43337    0.9384
## depressionW4b_yes                   0.4496    2.22399   0.23315    0.8672
## insurance_statusb_yes_insurance     1.0555    0.94742   0.64989    1.7143
## general_healthpoor/bad              1.3511    0.74016   0.71633    2.5482
## mentorb_yes                         0.6482    1.54285   0.41421    1.0142
## volunteerb_yes                      1.1177    0.89469   0.81531    1.5322
## 
## Concordance= 0.864  (se = 0.019 )
## Likelihood ratio test= NA  on 30 df,   p=NA
## Wald test            = 463.6  on 30 df,   p=<2e-16
## Score (logrank) test = NA  on 30 df,   p=NA
## Response sexb_female :
## 
## Call:
## lm(formula = sexb_female ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.5845 -0.5428  0.4321  0.4541  0.4827 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                      0.27257
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.00852
##                                                                 Std. Error
## (Intercept)                                                        0.44741
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.01952
##                                                                 t value
## (Intercept)                                                       0.609
## des2$variables$age_transition1[des2$variables$transition1 == 1]  -0.437
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.543
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.663
## 
## Residual standard error: 0.4992 on 320 degrees of freedom
## Multiple R-squared:  0.0005951,  Adjusted R-squared:  -0.002528 
## F-statistic: 0.1905 on 1 and 320 DF,  p-value: 0.6628
## 
## 
## Response racethnicb-nhblack :
## 
## Call:
## lm(formula = `racethnicb-nhblack` ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.05529 -0.04626 -0.04358 -0.04043  0.96713 
## 
## Coefficients:
##                                                                  Estimate
## (Intercept)                                                     -0.043359
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.002679
##                                                                 Std. Error
## (Intercept)                                                       0.183331
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.007998
##                                                                 t value
## (Intercept)                                                      -0.237
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.335
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.813
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.738
## 
## Residual standard error: 0.2046 on 320 degrees of freedom
## Multiple R-squared:  0.0003506,  Adjusted R-squared:  -0.002773 
## F-statistic: 0.1122 on 1 and 320 DF,  p-value: 0.7379
## 
## 
## Response racethnicc-hispanic :
## 
## Call:
## lm(formula = `racethnicc-hispanic` ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.2465 -0.2127 -0.2059 -0.1949  0.8160 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                      0.05870
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.00547
##                                                                 Std. Error
## (Intercept)                                                        0.36552
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.01595
##                                                                 t value
## (Intercept)                                                       0.161
## des2$variables$age_transition1[des2$variables$transition1 == 1]  -0.343
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.873
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.732
## 
## Residual standard error: 0.4079 on 320 degrees of freedom
## Multiple R-squared:  0.0003677,  Adjusted R-squared:  -0.002756 
## F-statistic: 0.1177 on 1 and 320 DF,  p-value: 0.7318
## 
## 
## Response racethnicd-asian :
## 
## Call:
## lm(formula = `racethnicd-asian` ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.5641 -0.4963 -0.4189  0.5065  0.6243 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                     -0.19825
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.01239
##                                                                 Std. Error
## (Intercept)                                                        0.45257
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.01974
##                                                                 t value
## (Intercept)                                                      -0.438
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.628
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.662
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.531
## 
## Residual standard error: 0.505 on 320 degrees of freedom
## Multiple R-squared:  0.00123,    Adjusted R-squared:  -0.001892 
## F-statistic: 0.394 on 1 and 320 DF,  p-value: 0.5307
## 
## 
## Response racethnice-native_american :
## 
## Call:
## lm(formula = `racethnice-native_american` ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.00894 -0.00501 -0.00329 -0.00156  0.99499 
## 
## Coefficients:
##                                                                  Estimate
## (Intercept)                                                     -0.039644
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.001725
##                                                                 Std. Error
## (Intercept)                                                       0.049973
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.002180
##                                                                 t value
## (Intercept)                                                      -0.793
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.791
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.428
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.429
## 
## Residual standard error: 0.05576 on 320 degrees of freedom
## Multiple R-squared:  0.001954,   Adjusted R-squared:  -0.001165 
## F-statistic: 0.6264 on 1 and 320 DF,  p-value: 0.4293
## 
## 
## Response racethnicf-other :
## 
## Call:
## lm(formula = `racethnicf-other` ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.04567 -0.02869 -0.02412 -0.01955  0.98114 
## 
## Coefficients:
##                                                                  Estimate
## (Intercept)                                                      0.105957
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.004567
##                                                                 Std. Error
## (Intercept)                                                       0.139841
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.006100
##                                                                 t value
## (Intercept)                                                       0.758
## des2$variables$age_transition1[des2$variables$transition1 == 1]  -0.749
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.449
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.455
## 
## Residual standard error: 0.156 on 320 degrees of freedom
## Multiple R-squared:  0.001749,   Adjusted R-squared:  -0.001371 
## F-statistic: 0.5606 on 1 and 320 DF,  p-value: 0.4546
## 
## 
## Response sexorientb_bisexual :
## 
## Call:
## lm(formula = sexorientb_bisexual ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.01636 -0.01163 -0.00953 -0.00743  0.99064 
## 
## Coefficients:
##                                                                  Estimate
## (Intercept)                                                     -0.042485
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.002097
##                                                                 Std. Error
## (Intercept)                                                       0.086325
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.003766
##                                                                 t value
## (Intercept)                                                      -0.492
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.557
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.623
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.578
## 
## Residual standard error: 0.09633 on 320 degrees of freedom
## Multiple R-squared:  0.0009682,  Adjusted R-squared:  -0.002154 
## F-statistic: 0.3101 on 1 and 320 DF,  p-value: 0.578
## 
## 
## Response sexorientc_LGB :
## 
## Call:
## lm(formula = sexorientc_LGB ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.03535 -0.02315 -0.01922 -0.01516  0.98484 
## 
## Coefficients:
##                                                                  Estimate
## (Intercept)                                                     -0.103022
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.004064
##                                                                 Std. Error
## (Intercept)                                                       0.121408
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.005296
##                                                                 t value
## (Intercept)                                                      -0.849
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.767
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.397
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.443
## 
## Residual standard error: 0.1355 on 320 degrees of freedom
## Multiple R-squared:  0.001837,   Adjusted R-squared:  -0.001282 
## F-statistic: 0.5889 on 1 and 320 DF,  p-value: 0.4434
## 
## 
## Response educb_highschool_grad :
## 
## Call:
## lm(formula = educb_highschool_grad ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.5242 -0.4873 -0.4576  0.5127  0.5525 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                      0.21739
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.00859
##                                                                 Std. Error
## (Intercept)                                                        0.44815
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.01955
##                                                                 t value
## (Intercept)                                                       0.485
## des2$variables$age_transition1[des2$variables$transition1 == 1]  -0.439
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.628
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.661
## 
## Residual standard error: 0.5001 on 320 degrees of freedom
## Multiple R-squared:  0.000603,   Adjusted R-squared:  -0.00252 
## F-statistic: 0.1931 on 1 and 320 DF,  p-value: 0.6607
## 
## 
## Response educc_college_bach :
## 
## Call:
## lm(formula = educc_college_bach ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.3813 -0.3139 -0.2872  0.6640  0.7791 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                     -0.47221
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.02211
##                                                                 Std. Error
## (Intercept)                                                        0.41194
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.01797
##                                                                 t value
## (Intercept)                                                      -1.146
## des2$variables$age_transition1[des2$variables$transition1 == 1]   1.230
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.253
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.220
## 
## Residual standard error: 0.4597 on 320 degrees of freedom
## Multiple R-squared:  0.004707,   Adjusted R-squared:  0.001597 
## F-statistic: 1.513 on 1 and 320 DF,  p-value: 0.2195
## 
## 
## Response educd_college+ :
## 
## Call:
## lm(formula = `educd_college+` ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.2089 -0.1808 -0.1740 -0.1641  0.8436 
## 
## Coefficients:
##                                                                  Estimate
## (Intercept)                                                     -0.139803
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.004386
##                                                                 Std. Error
## (Intercept)                                                       0.342857
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.014957
##                                                                 t value
## (Intercept)                                                      -0.408
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.293
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.684
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.770
## 
## Residual standard error: 0.3826 on 320 degrees of freedom
## Multiple R-squared:  0.0002687,  Adjusted R-squared:  -0.002855 
## F-statistic: 0.08599 on 1 and 320 DF,  p-value: 0.7695
## 
## 
## Response incomeW4b_$15,000<$30,000 :
## 
## Call:
## lm(formula = `incomeW4b_$15,000<$30,000` ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.09695 -0.08596 -0.08110 -0.07541  0.93432 
## 
## Coefficients:
##                                                                  Estimate
## (Intercept)                                                     -0.137010
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.004865
##                                                                 Std. Error
## (Intercept)                                                       0.244856
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.010682
##                                                                 t value
## (Intercept)                                                      -0.560
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.455
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.576
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.649
## 
## Residual standard error: 0.2732 on 320 degrees of freedom
## Multiple R-squared:  0.0006479,  Adjusted R-squared:  -0.002475 
## F-statistic: 0.2075 on 1 and 320 DF,  p-value: 0.6491
## 
## 
## Response incomeW4c_$30,000<$50,000 :
## 
## Call:
## lm(formula = `incomeW4c_$30,000<$50,000` ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.1619 -0.1476 -0.1418 -0.1350  0.8711 
## 
## Coefficients:
##                                                                  Estimate
## (Intercept)                                                     -0.076776
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.002635
##                                                                 Std. Error
## (Intercept)                                                       0.314564
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.013723
##                                                                 t value
## (Intercept)                                                      -0.244
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.192
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.807
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.848
## 
## Residual standard error: 0.351 on 320 degrees of freedom
## Multiple R-squared:  0.0001152,  Adjusted R-squared:  -0.003009 
## F-statistic: 0.03688 on 1 and 320 DF,  p-value: 0.8478
## 
## 
## Response incomeW4d_$50,000<$75,000 :
## 
## Call:
## lm(formula = `incomeW4d_$50,000<$75,000` ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.2992 -0.2598 -0.2477  0.7118  0.7671 
## 
## Coefficients:
##                                                                  Estimate
## (Intercept)                                                      0.077298
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.004017
##                                                                 Std. Error
## (Intercept)                                                       0.391807
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.017092
##                                                                 t value
## (Intercept)                                                       0.197
## des2$variables$age_transition1[des2$variables$transition1 == 1]  -0.235
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.844
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.814
## 
## Residual standard error: 0.4372 on 320 degrees of freedom
## Multiple R-squared:  0.0001726,  Adjusted R-squared:  -0.002952 
## F-statistic: 0.05523 on 1 and 320 DF,  p-value: 0.8144
## 
## 
## Response incomeW4e_$75,000<$100,000 :
## 
## Call:
## lm(formula = `incomeW4e_$75,000<$100,000` ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.2248 -0.2152 -0.2044 -0.1882  0.8207 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                     -0.07020
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.00285
##                                                                 Std. Error
## (Intercept)                                                        0.36488
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.01592
##                                                                 t value
## (Intercept)                                                      -0.192
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.179
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.848
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.858
## 
## Residual standard error: 0.4072 on 320 degrees of freedom
## Multiple R-squared:  0.0001002,  Adjusted R-squared:  -0.003025 
## F-statistic: 0.03205 on 1 and 320 DF,  p-value: 0.858
## 
## 
## Response incomeW4f_$100,000<$150,000 :
## 
## Call:
## lm(formula = `incomeW4f_$100,000<$150,000` ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.2624 -0.2100 -0.1912 -0.1684  0.8606 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                      0.35130
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.01450
##                                                                 Std. Error
## (Intercept)                                                        0.36045
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.01572
##                                                                 t value
## (Intercept)                                                       0.975
## des2$variables$age_transition1[des2$variables$transition1 == 1]  -0.922
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.330
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.357
## 
## Residual standard error: 0.4022 on 320 degrees of freedom
## Multiple R-squared:  0.002651,   Adjusted R-squared:  -0.0004655 
## F-statistic: 0.8506 on 1 and 320 DF,  p-value: 0.3571
## 
## 
## Response incomeW4g_$150,000+ :
## 
## Call:
## lm(formula = `incomeW4g_$150,000+` ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.13838 -0.11354 -0.10282 -0.09207  0.92934 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                     -0.20593
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.01072
##                                                                 Std. Error
## (Intercept)                                                        0.27227
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.01188
##                                                                 t value
## (Intercept)                                                      -0.756
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.903
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.450
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.367
## 
## Residual standard error: 0.3038 on 320 degrees of freedom
## Multiple R-squared:  0.00254,    Adjusted R-squared:  -0.0005771 
## F-statistic: 0.8148 on 1 and 320 DF,  p-value: 0.3674
## 
## 
## Response marriedW4ab_married :
## 
## Call:
## lm(formula = marriedW4ab_married ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.6181 -0.4588 -0.3595  0.5345  0.7257 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                     -0.96459
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.04458
##                                                                 Std. Error
## (Intercept)                                                        0.44523
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.01942
##                                                                 t value
## (Intercept)                                                      -2.167
## des2$variables$age_transition1[des2$variables$transition1 == 1]   2.295
##                                                                 Pr(>|t|)  
## (Intercept)                                                       0.0310 *
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.0224 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4968 on 320 degrees of freedom
## Multiple R-squared:  0.0162, Adjusted R-squared:  0.01312 
## F-statistic: 5.268 on 1 and 320 DF,  p-value: 0.02236
## 
## 
## Response friendshipsb_1or2 :
## 
## Call:
## lm(formula = friendshipsb_1or2 ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.2127 -0.1853 -0.1768 -0.1658  0.8408 
## 
## Coefficients:
##                                                                  Estimate
## (Intercept)                                                     -0.176335
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.006514
##                                                                 Std. Error
## (Intercept)                                                       0.345086
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.015054
##                                                                 t value
## (Intercept)                                                      -0.511
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.433
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.610
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.666
## 
## Residual standard error: 0.3851 on 320 degrees of freedom
## Multiple R-squared:  0.0005848,  Adjusted R-squared:  -0.002538 
## F-statistic: 0.1872 on 1 and 320 DF,  p-value: 0.6655
## 
## 
## Response friendshipsc_3to9 :
## 
## Call:
## lm(formula = friendshipsc_3to9 ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.7067 -0.6393  0.3281  0.3514  0.4059 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                      0.37293
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.01629
##                                                                 Std. Error
## (Intercept)                                                        0.42654
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.01861
##                                                                 t value
## (Intercept)                                                       0.874
## des2$variables$age_transition1[des2$variables$transition1 == 1]  -0.875
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.383
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.382
## 
## Residual standard error: 0.476 on 320 degrees of freedom
## Multiple R-squared:  0.002389,   Adjusted R-squared:  -0.0007287 
## F-statistic: 0.7662 on 1 and 320 DF,  p-value: 0.382
## 
## 
## Response friendshipsd_>10 :
## 
## Call:
## lm(formula = `friendshipsd_>10` ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.1715 -0.1509 -0.1411 -0.1219  0.8896 
## 
## Coefficients:
##                                                                  Estimate
## (Intercept)                                                     -0.185150
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.009814
##                                                                 Std. Error
## (Intercept)                                                       0.311500
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.013589
##                                                                 t value
## (Intercept)                                                      -0.594
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.722
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.553
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.471
## 
## Residual standard error: 0.3476 on 320 degrees of freedom
## Multiple R-squared:  0.001627,   Adjusted R-squared:  -0.001493 
## F-statistic: 0.5216 on 1 and 320 DF,  p-value: 0.4707
## 
## 
## Response church.attendb_once.week :
## 
## Call:
## lm(formula = church.attendb_once.week ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.1947 -0.1690 -0.1639 -0.1607  0.8470 
## 
## Coefficients:
##                                                                  Estimate
## (Intercept)                                                      0.027908
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.002376
##                                                                 Std. Error
## (Intercept)                                                       0.335653
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.014642
##                                                                 t value
## (Intercept)                                                       0.083
## des2$variables$age_transition1[des2$variables$transition1 == 1]  -0.162
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.934
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.871
## 
## Residual standard error: 0.3745 on 320 degrees of freedom
## Multiple R-squared:  8.229e-05,  Adjusted R-squared:  -0.003042 
## F-statistic: 0.02633 on 1 and 320 DF,  p-value: 0.8712
## 
## 
## Response church.attendc_2plus.week :
## 
## Call:
## lm(formula = church.attendc_2plus.week ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.10400 -0.06996 -0.05452 -0.03908  0.97536 
## 
## Coefficients:
##                                                                  Estimate
## (Intercept)                                                     -0.359444
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.015444
##                                                                 Std. Error
## (Intercept)                                                       0.199851
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.008718
##                                                                 t value
## (Intercept)                                                      -1.799
## des2$variables$age_transition1[des2$variables$transition1 == 1]   1.771
##                                                                 Pr(>|t|)  
## (Intercept)                                                       0.0730 .
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.0774 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.223 on 320 degrees of freedom
## Multiple R-squared:  0.009711,   Adjusted R-squared:  0.006616 
## F-statistic: 3.138 on 1 and 320 DF,  p-value: 0.07744
## 
## 
## Response unloved_bycaretakerW4b_10+_times :
## 
## Call:
## lm(formula = `unloved_bycaretakerW4b_10+_times` ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.12458 -0.11039 -0.10434 -0.09764  0.91427 
## 
## Coefficients:
##                                                                  Estimate
## (Intercept)                                                     -0.100186
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.004651
##                                                                 Std. Error
## (Intercept)                                                       0.276141
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.012046
##                                                                 t value
## (Intercept)                                                      -0.363
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.386
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.717
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.700
## 
## Residual standard error: 0.3081 on 320 degrees of freedom
## Multiple R-squared:  0.0004656,  Adjusted R-squared:  -0.002658 
## F-statistic: 0.1491 on 1 and 320 DF,  p-value: 0.6997
## 
## 
## Response unloved_bycaretakerW4c_never :
## 
## Call:
## lm(formula = unloved_bycaretakerW4c_never ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.5861 -0.4976  0.4047  0.5024  0.5576 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                      0.49416
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.01840
##                                                                 Std. Error
## (Intercept)                                                        0.44956
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.01961
##                                                                 t value
## (Intercept)                                                       1.099
## des2$variables$age_transition1[des2$variables$transition1 == 1]  -0.938
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.273
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.349
## 
## Residual standard error: 0.5016 on 320 degrees of freedom
## Multiple R-squared:  0.002744,   Adjusted R-squared:  -0.0003729 
## F-statistic: 0.8803 on 1 and 320 DF,  p-value: 0.3488
## 
## 
## Response depressionW4b_yes :
## 
## Call:
## lm(formula = depressionW4b_yes ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.06511 -0.06288 -0.06224 -0.06108  0.94019 
## 
## Coefficients:
##                                                                  Estimate
## (Intercept)                                                     -0.012711
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.000632
##                                                                 Std. Error
## (Intercept)                                                       0.216950
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.009464
##                                                                 t value
## (Intercept)                                                      -0.059
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.067
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.953
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.947
## 
## Residual standard error: 0.2421 on 320 degrees of freedom
## Multiple R-squared:  1.394e-05,  Adjusted R-squared:  -0.003111 
## F-statistic: 0.00446 on 1 and 320 DF,  p-value: 0.9468
## 
## 
## Response insurance_statusb_yes_insurance :
## 
## Call:
## lm(formula = insurance_statusb_yes_insurance ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.8660  0.1408  0.1474  0.1528  0.1721 
## 
## Coefficients:
##                                                                  Estimate
## (Intercept)                                                     -0.077440
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.003054
##                                                                 Std. Error
## (Intercept)                                                       0.320079
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.013963
##                                                                 t value
## (Intercept)                                                      -0.242
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.219
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.809
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.827
## 
## Residual standard error: 0.3572 on 320 degrees of freedom
## Multiple R-squared:  0.0001495,  Adjusted R-squared:  -0.002975 
## F-statistic: 0.04784 on 1 and 320 DF,  p-value: 0.827
## 
## 
## Response general_healthpoor/bad :
## 
## Call:
## lm(formula = `general_healthpoor/bad` ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.10322 -0.10048 -0.09910 -0.09748  0.90282 
## 
## Coefficients:
##                                                                   Estimate
## (Intercept)                                                     -0.0073978
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.0002799
##                                                                 Std. Error
## (Intercept)                                                      0.2689020
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.0117305
##                                                                 t value
## (Intercept)                                                      -0.028
## des2$variables$age_transition1[des2$variables$transition1 == 1]  -0.024
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.978
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.981
## 
## Residual standard error: 0.3001 on 320 degrees of freedom
## Multiple R-squared:  1.779e-06,  Adjusted R-squared:  -0.003123 
## F-statistic: 0.0005694 on 1 and 320 DF,  p-value: 0.981
## 
## 
## Response mentorb_yes :
## 
## Call:
## lm(formula = mentorb_yes ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.7124 -0.6796  0.3056  0.3173  0.3428 
## 
## Coefficients:
##                                                                  Estimate
## (Intercept)                                                     -0.181606
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.007408
##                                                                 Std. Error
## (Intercept)                                                       0.416932
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.018188
##                                                                 t value
## (Intercept)                                                      -0.436
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.407
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.663
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.684
## 
## Residual standard error: 0.4652 on 320 degrees of freedom
## Multiple R-squared:  0.0005182,  Adjusted R-squared:  -0.002605 
## F-statistic: 0.1659 on 1 and 320 DF,  p-value: 0.684
## 
## 
## Response volunteerb_yes :
## 
## Call:
## lm(formula = volunteerb_yes ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.5544 -0.4980  0.4433  0.4969  0.5423 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                      0.27444
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.01284
##                                                                 Std. Error
## (Intercept)                                                        0.44831
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.01956
##                                                                 t value
## (Intercept)                                                       0.612
## des2$variables$age_transition1[des2$variables$transition1 == 1]  -0.656
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.541
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.512
## 
## Residual standard error: 0.5002 on 320 degrees of freedom
## Multiple R-squared:  0.001345,   Adjusted R-squared:  -0.001776 
## F-statistic: 0.4309 on 1 and 320 DF,  p-value: 0.512

Grambsch and Therneau test

##                                       rho    chisq        p
## sexb_female                      -0.11605  38.5118 5.44e-10
## racethnicb-nhblack                0.04713   3.9413 4.71e-02
## racethnicc-hispanic               0.03361   3.1250 7.71e-02
## racethnicd-asian                  0.09604  24.2164 8.61e-07
## racethnice-native_american        0.02292   1.0427 3.07e-01
## racethnicf-other                 -0.06005   8.8977 2.86e-03
## sexorientb_bisexual               0.00708   0.0986 7.54e-01
## sexorientc_LGB                   -0.01171   0.1808 6.71e-01
## educb_highschool_grad             0.11950  38.8473 4.58e-10
## educc_college_bach                0.08438  17.2918 3.21e-05
## educd_college+                    0.13313  49.2969 2.20e-12
## incomeW4b_$15,000<$30,000         0.11680  19.3426 1.09e-05
## incomeW4c_$30,000<$50,000         0.07209   7.3298 6.78e-03
## incomeW4d_$50,000<$75,000         0.06417   6.4491 1.11e-02
## incomeW4e_$75,000<$100,000        0.05776   4.4264 3.54e-02
## incomeW4f_$100,000<$150,000       0.09151  12.2103 4.75e-04
## incomeW4g_$150,000+               0.08602   7.5803 5.90e-03
## marriedW4ab_married              -0.21585 103.5136 2.59e-24
## friendshipsb_1or2                 0.17534  60.0803 9.11e-15
## friendshipsc_3to9                 0.15045  43.7214 3.79e-11
## friendshipsd_>10                  0.13533  40.1325 2.37e-10
## church.attendb_once.week          0.09456  26.1975 3.08e-07
## church.attendc_2plus.week         0.17536  50.7624 1.04e-12
## unloved_bycaretakerW4b_10+_times -0.06982   4.5790 3.24e-02
## unloved_bycaretakerW4c_never     -0.16953  75.9162 2.96e-18
## depressionW4b_yes                 0.12471  16.8199 4.11e-05
## insurance_statusb_yes_insurance  -0.16382  49.5440 1.94e-12
## general_healthpoor/bad           -0.12790  47.8091 4.70e-12
## mentorb_yes                      -0.00649   0.0689 7.93e-01
## volunteerb_yes                   -0.15561  31.2885 2.22e-08
## GLOBAL                                 NA 230.3985 8.81e-33

Plot of residuals

###Martingale residuals

## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401

## Stratified 1 - level Cluster Sampling design (with replacement)
## With (132) clusters.
## svydesign(ids = ~psuscid, strata = ~region, weights = ~GSWGT4, 
##     data = addhealth, nest = T)
## Call:
## svycoxph(formula = Surv(time = age_transition1, event = transition1) ~ 
##     strata(sexorient) + sex + racethnic + educ + incomeW4 + marriedW4a + 
##         friendships + church.attend + unloved_bycaretakerW4 + 
##         depressionW4 + insurance_status + general_health + mentor + 
##         volunteer, design = des2)
## 
##   n= 7945, number of events= 322 
## 
##                                      coef exp(coef) se(coef)      z
## sexb_female                      -0.12676   0.88094  0.22730 -0.558
## racethnicb-nhblack               -0.54776   0.57825  0.53088 -1.032
## racethnicc-hispanic               2.66254  14.33263  0.34729  7.667
## racethnicd-asian                  3.64873  38.42596  0.31185 11.700
## racethnice-native_american        0.63428   1.88566  1.14525  0.554
## racethnicf-other                  2.07505   7.96492  0.66639  3.114
## educb_highschool_grad             0.49799   1.64542  0.48585  1.025
## educc_college_bach                0.91258   2.49074  0.50811  1.796
## educd_college+                    1.52587   4.59914  0.54418  2.804
## incomeW4b_$15,000<$30,000         1.41935   4.13442  0.52627  2.697
## incomeW4c_$30,000<$50,000         0.94458   2.57174  0.48028  1.967
## incomeW4d_$50,000<$75,000         1.34472   3.83713  0.53381  2.519
## incomeW4e_$75,000<$100,000        1.51927   4.56888  0.52750  2.880
## incomeW4f_$100,000<$150,000       1.47862   4.38687  0.52235  2.831
## incomeW4g_$150,000+               1.02727   2.79342  0.42947  2.392
## marriedW4ab_married              -0.57187   0.56447  0.20520 -2.787
## friendshipsb_1or2                -0.31783   0.72773  0.55795 -0.570
## friendshipsc_3to9                -0.53307   0.58680  0.46824 -1.138
## friendshipsd_>10                 -0.80223   0.44833  0.55993 -1.433
## church.attendb_once.week          0.45418   1.57489  0.25769  1.763
## church.attendc_2plus.week        -0.09724   0.90734  0.38562 -0.252
## unloved_bycaretakerW4b_10+_times -0.20859   0.81173  0.24889 -0.838
## unloved_bycaretakerW4c_never     -0.44837   0.63867  0.19776 -2.267
## depressionW4b_yes                -0.79798   0.45024  0.33448 -2.386
## insurance_statusb_yes_insurance   0.04969   1.05095  0.24657  0.202
## general_healthpoor/bad            0.30262   1.35340  0.32449  0.933
## mentorb_yes                      -0.42526   0.65360  0.22957 -1.852
## volunteerb_yes                    0.10515   1.11087  0.16044  0.655
##                                  Pr(>|z|)    
## sexb_female                       0.57706    
## racethnicb-nhblack                0.30217    
## racethnicc-hispanic              1.77e-14 ***
## racethnicd-asian                  < 2e-16 ***
## racethnice-native_american        0.57969    
## racethnicf-other                  0.00185 ** 
## educb_highschool_grad             0.30537    
## educc_college_bach                0.07249 .  
## educd_college+                    0.00505 ** 
## incomeW4b_$15,000<$30,000         0.00700 ** 
## incomeW4c_$30,000<$50,000         0.04922 *  
## incomeW4d_$50,000<$75,000         0.01177 *  
## incomeW4e_$75,000<$100,000        0.00398 ** 
## incomeW4f_$100,000<$150,000       0.00464 ** 
## incomeW4g_$150,000+               0.01676 *  
## marriedW4ab_married               0.00532 ** 
## friendshipsb_1or2                 0.56892    
## friendshipsc_3to9                 0.25493    
## friendshipsd_>10                  0.15193    
## church.attendb_once.week          0.07798 .  
## church.attendc_2plus.week         0.80091    
## unloved_bycaretakerW4b_10+_times  0.40198    
## unloved_bycaretakerW4c_never      0.02337 *  
## depressionW4b_yes                 0.01705 *  
## insurance_statusb_yes_insurance   0.84028    
## general_healthpoor/bad            0.35102    
## mentorb_yes                       0.06396 .  
## volunteerb_yes                    0.51224    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                                  exp(coef) exp(-coef) lower .95 upper .95
## sexb_female                         0.8809    1.13514    0.5643    1.3754
## racethnicb-nhblack                  0.5782    1.72937    0.2043    1.6368
## racethnicc-hispanic                14.3326    0.06977    7.2563   28.3099
## racethnicd-asian                   38.4260    0.02602   20.8533   70.8068
## racethnice-native_american          1.8857    0.53032    0.1998   17.7950
## racethnicf-other                    7.9649    0.12555    2.1575   29.4043
## educb_highschool_grad               1.6454    0.60775    0.6349    4.2641
## educc_college_bach                  2.4907    0.40149    0.9201    6.7426
## educd_college+                      4.5991    0.21743    1.5830   13.3623
## incomeW4b_$15,000<$30,000           4.1344    0.24187    1.4738   11.5979
## incomeW4c_$30,000<$50,000           2.5717    0.38884    1.0033    6.5924
## incomeW4d_$50,000<$75,000           3.8371    0.26061    1.3478   10.9242
## incomeW4e_$75,000<$100,000          4.5689    0.21887    1.6248   12.8475
## incomeW4f_$100,000<$150,000         4.3869    0.22795    1.5759   12.2119
## incomeW4g_$150,000+                 2.7934    0.35798    1.2038    6.4819
## marriedW4ab_married                 0.5645    1.77157    0.3776    0.8439
## friendshipsb_1or2                   0.7277    1.37414    0.2438    2.1722
## friendshipsc_3to9                   0.5868    1.70416    0.2344    1.4691
## friendshipsd_>10                    0.4483    2.23052    0.1496    1.3434
## church.attendb_once.week            1.5749    0.63497    0.9504    2.6097
## church.attendc_2plus.week           0.9073    1.10213    0.4261    1.9320
## unloved_bycaretakerW4b_10+_times    0.8117    1.23194    0.4984    1.3221
## unloved_bycaretakerW4c_never        0.6387    1.56575    0.4335    0.9410
## depressionW4b_yes                   0.4502    2.22104    0.2337    0.8673
## insurance_statusb_yes_insurance     1.0509    0.95152    0.6482    1.7040
## general_healthpoor/bad              1.3534    0.73888    0.7165    2.5564
## mentorb_yes                         0.6536    1.52999    0.4168    1.0250
## volunteerb_yes                      1.1109    0.90019    0.8111    1.5214
## 
## Concordance= 0.863  (se = 0.019 )
## Likelihood ratio test= NA  on 28 df,   p=NA
## Wald test            = 426.1  on 28 df,   p=<2e-16
## Score (logrank) test = NA  on 28 df,   p=NA
## Stratified 1 - level Cluster Sampling design (with replacement)
## With (132) clusters.
## svydesign(ids = ~psuscid, strata = ~region, weights = ~GSWGT4, 
##     data = addhealth, nest = T)
## Call:
## svycoxph(formula = Surv(time = age_transition1, event = transition1) ~ 
##     strata(sex) + sexorient + racethnic + educ + incomeW4 + marriedW4a + 
##         friendships + church.attend + unloved_bycaretakerW4 + 
##         depressionW4 + insurance_status + general_health + mentor + 
##         volunteer, design = des2)
## 
##   n= 7945, number of events= 322 
## 
##                                      coef exp(coef) se(coef)      z
## sexorientb_bisexual              -0.76996   0.46303  0.92661 -0.831
## sexorientc_LGB                    0.88135   2.41415  0.44595  1.976
## racethnicb-nhblack               -0.54940   0.57730  0.53112 -1.034
## racethnicc-hispanic               2.65803  14.26811  0.34799  7.638
## racethnicd-asian                  3.65298  38.58941  0.31127 11.736
## racethnice-native_american        0.62399   1.86636  1.15076  0.542
## racethnicf-other                  2.07294   7.94817  0.66589  3.113
## educb_highschool_grad             0.50199   1.65200  0.48130  1.043
## educc_college_bach                0.91619   2.49975  0.50499  1.814
## educd_college+                    1.52827   4.61018  0.54199  2.820
## incomeW4b_$15,000<$30,000         1.44976   4.26209  0.52931  2.739
## incomeW4c_$30,000<$50,000         0.95994   2.61153  0.48575  1.976
## incomeW4d_$50,000<$75,000         1.36463   3.91427  0.53995  2.527
## incomeW4e_$75,000<$100,000        1.53502   4.64140  0.53312  2.879
## incomeW4f_$100,000<$150,000       1.49061   4.43980  0.52572  2.835
## incomeW4g_$150,000+               1.03239   2.80777  0.42712  2.417
## marriedW4ab_married              -0.56870   0.56626  0.20603 -2.760
## friendshipsb_1or2                -0.31808   0.72755  0.55785 -0.570
## friendshipsc_3to9                -0.53661   0.58473  0.46845 -1.145
## friendshipsd_>10                 -0.80946   0.44510  0.56118 -1.442
## church.attendb_once.week          0.45077   1.56952  0.25853  1.744
## church.attendc_2plus.week        -0.09707   0.90749  0.38604 -0.251
## unloved_bycaretakerW4b_10+_times -0.21180   0.80912  0.24885 -0.851
## unloved_bycaretakerW4c_never     -0.45158   0.63662  0.19563 -2.308
## depressionW4b_yes                -0.79792   0.45026  0.33545 -2.379
## insurance_statusb_yes_insurance   0.05570   1.05728  0.24632  0.226
## general_healthpoor/bad            0.29670   1.34541  0.32414  0.915
## mentorb_yes                      -0.43475   0.64743  0.22816 -1.905
## volunteerb_yes                    0.11005   1.11633  0.16046  0.686
##                                  Pr(>|z|)    
## sexorientb_bisexual               0.40600    
## sexorientc_LGB                    0.04812 *  
## racethnicb-nhblack                0.30094    
## racethnicc-hispanic               2.2e-14 ***
## racethnicd-asian                  < 2e-16 ***
## racethnice-native_american        0.58765    
## racethnicf-other                  0.00185 ** 
## educb_highschool_grad             0.29696    
## educc_college_bach                0.06964 .  
## educd_college+                    0.00481 ** 
## incomeW4b_$15,000<$30,000         0.00616 ** 
## incomeW4c_$30,000<$50,000         0.04813 *  
## incomeW4d_$50,000<$75,000         0.01149 *  
## incomeW4e_$75,000<$100,000        0.00399 ** 
## incomeW4f_$100,000<$150,000       0.00458 ** 
## incomeW4g_$150,000+               0.01564 *  
## marriedW4ab_married               0.00578 ** 
## friendshipsb_1or2                 0.56855    
## friendshipsc_3to9                 0.25201    
## friendshipsd_>10                  0.14918    
## church.attendb_once.week          0.08123 .  
## church.attendc_2plus.week         0.80146    
## unloved_bycaretakerW4b_10+_times  0.39469    
## unloved_bycaretakerW4c_never      0.02098 *  
## depressionW4b_yes                 0.01738 *  
## insurance_statusb_yes_insurance   0.82110    
## general_healthpoor/bad            0.36002    
## mentorb_yes                       0.05672 .  
## volunteerb_yes                    0.49282    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                                  exp(coef) exp(-coef) lower .95 upper .95
## sexorientb_bisexual                 0.4630    2.15969   0.07531    2.8467
## sexorientc_LGB                      2.4141    0.41422   1.00732    5.7857
## racethnicb-nhblack                  0.5773    1.73221   0.20385    1.6349
## racethnicc-hispanic                14.2681    0.07009   7.21373   28.2210
## racethnicd-asian                   38.5894    0.02591  20.96578   71.0273
## racethnice-native_american          1.8664    0.53580   0.19564   17.8041
## racethnicf-other                    7.9482    0.12582   2.15506   29.3140
## educb_highschool_grad               1.6520    0.60533   0.64317    4.2432
## educc_college_bach                  2.4998    0.40004   0.92907    6.7258
## educd_college+                      4.6102    0.21691   1.59359   13.3370
## incomeW4b_$15,000<$30,000           4.2621    0.23463   1.51032   12.0275
## incomeW4c_$30,000<$50,000           2.6115    0.38292   1.00792    6.7665
## incomeW4d_$50,000<$75,000           3.9143    0.25548   1.35845   11.2787
## incomeW4e_$75,000<$100,000          4.6414    0.21545   1.63252   13.1959
## incomeW4f_$100,000<$150,000         4.4398    0.22524   1.58441   12.4411
## incomeW4g_$150,000+                 2.8078    0.35615   1.21563    6.4852
## marriedW4ab_married                 0.5663    1.76596   0.37813    0.8480
## friendshipsb_1or2                   0.7275    1.37448   0.24379    2.1712
## friendshipsc_3to9                   0.5847    1.71020   0.23346    1.4645
## friendshipsd_>10                    0.4451    2.24669   0.14818    1.3370
## church.attendb_once.week            1.5695    0.63714   0.94560    2.6051
## church.attendc_2plus.week           0.9075    1.10194   0.42584    1.9339
## unloved_bycaretakerW4b_10+_times    0.8091    1.23591   0.49682    1.3177
## unloved_bycaretakerW4c_never        0.6366    1.57080   0.43387    0.9341
## depressionW4b_yes                   0.4503    2.22092   0.23331    0.8690
## insurance_statusb_yes_insurance     1.0573    0.94582   0.65241    1.7134
## general_healthpoor/bad              1.3454    0.74327   0.71276    2.5396
## mentorb_yes                         0.6474    1.54457   0.41398    1.0125
## volunteerb_yes                      1.1163    0.89579   0.81510    1.5289
## 
## Concordance= 0.864  (se = 0.018 )
## Likelihood ratio test= NA  on 29 df,   p=NA
## Wald test            = 436.3  on 29 df,   p=<2e-16
## Score (logrank) test = NA  on 29 df,   p=NA
For this analysis the National Longitudinal Study of Adolescent to Adult Health (ADD Health) was used to determine if LGB individuals experience a higher rate of job loss due to social stigma then heterosexual individuals. ADD Health is a nationally representative longitudinal study of adolescents in the United States who are between 7 and 12 years old. The survey was conducted in 1994 with follow up surveys in 1996, 2008, and 2016. A Cox Proportional Hazards Model was utilized to analyze the data.
The results from the analysis shows that females are at a lower risk then males for losing a job.
Non-Hispanic blacks are at a higher risk of losing a job than non-Hispanic whites.
People with a bachelor’s degree and higher (Masters, PhD) are at a lower risk of losing a job than people with less then an high school education
People who are at a higher risk of not being able to pay utility bills then those who can pay utility bills
People who have health insurance are at a lower risk of losing a job then those who do not have insurance
People who are depressed are at a higher risk of losing a job then people who are not depressed.
People who leave a job for health reasons are at a lower risk of losing a job then people who are fired from a job.
People who are dissatisfied with a job are at a higher risk of losing a job then people who are satisfied with a job.
From this analysis it would appear that LGB individuals do not experience a higher rate of job loss due to social stigma then heterosexual individuals.