This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.
#install.packages("fUnitRoots")
library("fUnitRoots")
## Loading required package: timeDate
## Loading required package: timeSeries
## Loading required package: fBasics
data=read.table("m-unrate-4811.csv", header=T)
gdp=log(data[,1])
head(gdp)
## [1] 1.223775 1.335001 1.386294 1.360977 1.252763 1.280934
m1=ar(diff(gdp), method="mle")
m1$order
## [1] 12
adfTest(gdp,lags=12,type=c("c"))
##
## Title:
## Augmented Dickey-Fuller Test
##
## Test Results:
## PARAMETER:
## Lag Order: 12
## STATISTIC:
## Dickey-Fuller: -2.8398
## P VALUE:
## 0.05503
##
## Description:
## Thu Oct 17 20:20:44 2019 by user: Setsnee
dgdp=diff(gdp)
tdx=c(1:length(dgdp))
m2=arima(dgdp,order = c(2,0,0),xreg=tdx)
m2
##
## Call:
## arima(x = dgdp, order = c(2, 0, 0), xreg = tdx)
##
## Coefficients:
## ar1 ar2 intercept tdx
## 0.1056 0.2374 0.0018 0
## s.e. 0.0352 0.0353 0.0041 0
##
## sigma^2 estimated as 0.001415: log likelihood = 1425.87, aic = -2841.75
m2$coef
## ar1 ar2 intercept tdx
## 1.055739e-01 2.374440e-01 1.803328e-03 -1.307073e-06
sqrt(diag(m2$var.coef))
## ar1 ar2 intercept tdx
## 3.523565e-02 3.526080e-02 4.130150e-03 3.726187e-05
tratio=m2$coef/sqrt(diag(m2$var.coef))
tratio
## ar1 ar2 intercept tdx
## 2.99622398 6.73393746 0.43662524 -0.03507803
vix=log(data$rate)
length(vix)
## [1] 767
#acf(vix)
acf
## function (x, lag.max = NULL, type = c("correlation", "covariance",
## "partial"), plot = TRUE, na.action = na.fail, demean = TRUE,
## ...)
## {
## type <- match.arg(type)
## if (type == "partial") {
## m <- match.call()
## m[[1L]] <- quote(stats::pacf)
## m$type <- NULL
## return(eval(m, parent.frame()))
## }
## series <- deparse(substitute(x))
## x <- na.action(as.ts(x))
## x.freq <- frequency(x)
## x <- as.matrix(x)
## if (!is.numeric(x))
## stop("'x' must be numeric")
## sampleT <- as.integer(nrow(x))
## nser <- as.integer(ncol(x))
## if (is.na(sampleT) || is.na(nser))
## stop("'sampleT' and 'nser' must be integer")
## if (is.null(lag.max))
## lag.max <- floor(10 * (log10(sampleT) - log10(nser)))
## lag.max <- as.integer(min(lag.max, sampleT - 1L))
## if (is.na(lag.max) || lag.max < 0)
## stop("'lag.max' must be at least 0")
## if (demean)
## x <- sweep(x, 2, colMeans(x, na.rm = TRUE), check.margin = FALSE)
## lag <- matrix(1, nser, nser)
## lag[lower.tri(lag)] <- -1
## acf <- .Call(C_acf, x, lag.max, type == "correlation")
## lag <- outer(0:lag.max, lag/x.freq)
## acf.out <- structure(list(acf = acf, type = type, n.used = sampleT,
## lag = lag, series = series, snames = colnames(x)), class = "acf")
## if (plot) {
## plot.acf(acf.out, ...)
## invisible(acf.out)
## }
## else acf.out
## }
## <bytecode: 0x0000000017199168>
## <environment: namespace:stats>
m1=arima(vix,order=c(0,1,1))
m1
##
## Call:
## arima(x = vix, order = c(0, 1, 1))
##
## Coefficients:
## ma1
## 0.0958
## s.e. 0.0305
##
## sigma^2 estimated as 0.001509: log likelihood = 1401.28, aic = -2798.56
Box.test(m1$residuals,lag=10,type="Ljung")
##
## Box-Ljung test
##
## data: m1$residuals
## X-squared = 116.25, df = 10, p-value < 2.2e-16
pp=1-pchisq(14.25,9)
pp
## [1] 0.113706
#plot(vix)
# Exercise 7
da=read.table("q-jnj-earns-9211.csv",header = T)
head(da)
## day mon year earns
## 1 30 1 1992 0.11
## 2 23 4 1992 0.18
## 3 21 7 1992 0.18
## 4 20 10 1992 0.17
## 5 1 2 1993 0.12
## 6 29 4 1993 0.20
jnj=da$earns
jnj1=ts(jnj,frequency=12,start=c(1992,1))
#par(mfcol=c(2,1))
#plot(jnj1,xlab="year",ylab="returns")
#title(main="(a): Simple returns")
#acf(jnj,lag=24) # command to obtain sample ACF of the data
ln.jnj=log(jnj+1)
Box.test(jnj,lag=12,type="Ljung")
##
## Box-Ljung test
##
## data: jnj
## X-squared = 584.59, df = 12, p-value < 2.2e-16
Box.test(ln.jnj,lag=12,type="Ljung")
##
## Box-Ljung test
##
## data: ln.jnj
## X-squared = 598.48, df = 12, p-value < 2.2e-16
jnj2=ts(jnj,frequency=12,start=c(1992,1))
par(mfcol=c(2,1))
#plot(jnj1,xlab="year",ylab="returns")
#title(main="(a): Simple returns")
#acf(jnj1,lag=24)
gnp=diff(ln.jnj)
dim(da)
## [1] 78 4
tdx=c(1:78)/4+1992
#par(mfcol=c(2,1))
#plot(tdx,ln.jnj,xlab="year",ylab="gnp",type="l")
#plot(tdx[2:78],gnp,type="l",xlab="year",ylab="growth")
#acf(gnp,lag=12)
#pacf(gnp,lag=12) # compute PACF
m1=arima(gnp,order=c(3,0,0))
m1
##
## Call:
## arima(x = gnp, order = c(3, 0, 0))
##
## Coefficients:
## ar1 ar2 ar3 intercept
## -0.9547 -0.9342 -0.9461 0.0087
## s.e. 0.0324 0.0363 0.0277 0.0006
##
## sigma^2 estimated as 0.0003623: log likelihood = 192.15, aic = -374.3
#tsdiag(m1,gof=12) # model checking discussed later
p1=c(1,-m1$coef[1:3]) # set-up the polynomial
r1=polyroot(p1) # solve the polynomial equation
r1
## [1] 0.014824+1.019333i -1.017089+0.000000i 0.014824-1.019333i
Mod(r1)
## [1] 1.019441 1.017089 1.019441
k=2*pi/acos(0.014824/1.019441)
k
## [1] 4.037376
mm1=ar(gnp,method="mle")
mm1$order
## [1] 4
names(mm1)
## [1] "order" "ar" "var.pred" "x.mean"
## [5] "aic" "n.used" "n.obs" "order.max"
## [9] "partialacf" "resid" "method" "series"
## [13] "frequency" "call" "asy.var.coef"
print(mm1$aic,digits=3)
## 0 1 2 3 4 5 6 7 8
## 251.685 232.820 226.296 51.073 0.000 1.821 3.812 5.118 0.102
## 9 10 11 12
## 1.430 1.319 2.384 4.215
aic=mm1$aic
length(aic)
## [1] 13
#plot(c(0:12),aic,type="h",xlab="order",ylab="aic")
#lines(0:12,aic,lty=2)
#Forecasting b)
m1=arima(jnj,order=c(0,0,9))
m1
##
## Call:
## arima(x = jnj, order = c(0, 0, 9))
##
## Coefficients:
## ma1 ma2 ma3 ma4 ma5 ma6 ma7 ma8
## 1.0058 1.2457 1.2014 2.1391 1.5133 1.319 1.0087 1.2378
## s.e. 0.1272 0.1732 0.2721 0.2876 0.2363 0.215 0.2427 0.2446
## ma9 intercept
## 0.3804 0.6094
## s.e. 0.1330 0.0791
##
## sigma^2 estimated as 0.003708: log likelihood = 96.24, aic = -170.47
m1=arima(jnj,order=c(0,0,9),fixed=c(NA,0,NA,0,0,0,0,0,NA,NA))
m1
##
## Call:
## arima(x = jnj, order = c(0, 0, 9), fixed = c(NA, 0, NA, 0, 0, 0, 0, 0, NA, NA))
##
## Coefficients:
## ma1 ma2 ma3 ma4 ma5 ma6 ma7 ma8 ma9 intercept
## 0.1294 0 0.6503 0 0 0 0 0 -0.2064 0.6002
## s.e. 0.2891 0 0.3004 0 0 0 0 0 0.2011 0.0468
##
## sigma^2 estimated as 0.06913: log likelihood = -7.43, aic = 24.87
sqrt(0.06913)
## [1] 0.2629258
Box.test(m1$residuals,lag=12,type="Ljung")
##
## Box-Ljung test
##
## data: m1$residuals
## X-squared = 394.68, df = 12, p-value < 2.2e-16
pv=1-pchisq(394.68,9)
pv
## [1] 0
pv=1-pchisq(394.68,9)
pv
## [1] 0
m1=arima(jnj[1:78],order=c(0,0,9),fixed=c(NA,0,NA,0,0,0,0,0,NA,NA))
m1
##
## Call:
## arima(x = jnj[1:78], order = c(0, 0, 9), fixed = c(NA, 0, NA, 0, 0, 0, 0, 0,
## NA, NA))
##
## Coefficients:
## ma1 ma2 ma3 ma4 ma5 ma6 ma7 ma8 ma9 intercept
## 0.1294 0 0.6503 0 0 0 0 0 -0.2064 0.6002
## s.e. 0.2891 0 0.3004 0 0 0 0 0 0.2011 0.0468
##
## sigma^2 estimated as 0.06913: log likelihood = -7.43, aic = 24.87
predict(m1,10)
## $pred
## Time Series:
## Start = 79
## End = 88
## Frequency = 1
## [1] 0.9486664 0.6352115 0.8469624 0.5757401 0.4878375 0.5478441 0.4812723
## [8] 0.5757913 0.4822479 0.6002087
##
## $se
## Time Series:
## Start = 79
## End = 88
## Frequency = 1
## [1] 0.2629332 0.2651269 0.2651269 0.3154777 0.3154777 0.3154777 0.3154777
## [8] 0.3154777 0.3154777 0.3201099
#install.packages("fBasics")
# model comparison
da=read.table("q-gdpc96.csv",header=T)
head(da)
## year mon day gnp
## 1 1947 1 1 1780.4
## 2 1947 4 1 1778.1
## 3 1947 7 1 1776.6
## 4 1947 10 1 1804.0
## 5 1948 1 1 1833.4
## 6 1948 4 1 1867.6
#gdp=log(da$gdp)
dgdp=diff(gdp)
m1=ar(dgdp,method='mle')
m1$order
## [1] 12
m2=arima(dgdp,order=c(3,0,0))
m2
##
## Call:
## arima(x = dgdp, order = c(3, 0, 0))
##
## Coefficients:
## ar1 ar2 ar3 intercept
## 0.0674 0.2213 0.1585 0.0013
## s.e. 0.0358 0.0350 0.0359 0.0024
##
## sigma^2 estimated as 0.001379: log likelihood = 1435.49, aic = -2860.99
m3=arima(dgdp,order=c(3,0,0),season=list(order=c(1,0,1),period=4))
m3
##
## Call:
## arima(x = dgdp, order = c(3, 0, 0), seasonal = list(order = c(1, 0, 1), period = 4))
##
## Coefficients:
## ar1 ar2 ar3 sar1 sma1 intercept
## 0.0514 0.2102 0.1604 0.1885 -0.1228 0.0013
## s.e. 0.0370 0.0358 0.0360 0.2306 0.2317 0.0025
##
## sigma^2 estimated as 0.001374: log likelihood = 1436.97, aic = -2859.95