AR structure: We’d like to use AIC (Akaike information criteria) and BIC (Bayesian information criteria) to see which order is best.
#Using AIC as information criterion
Data$Avg %>% auto.arima(max.q = 0, max.p = 2, max.d = 0, trace = TRUE, ic = "aic")
##
## ARIMA(2,0,0) with non-zero mean : -216.1359
## ARIMA(0,0,0) with non-zero mean : 85.50236
## ARIMA(1,0,0) with non-zero mean : -212.8962
## ARIMA(0,0,0) with zero mean : 84.26737
## ARIMA(2,0,0) with zero mean : -217.7611
## ARIMA(1,0,0) with zero mean : -214.5527
##
## Best model: ARIMA(2,0,0) with zero mean
## Series: .
## ARIMA(2,0,0) with zero mean
##
## Coefficients:
## ar1 ar2
## 0.7806 0.1971
## s.e. 0.0839 0.0852
##
## sigma^2 estimated as 0.01135: log likelihood=111.88
## AIC=-217.76 AICc=-217.58 BIC=-209
#Using BIC as information criterion
Data$Avg %>% auto.arima(max.q = 0, max.p = 2, max.d = 0, trace = TRUE, ic = "bic")
##
## ARIMA(2,0,0) with non-zero mean : -204.456
## ARIMA(0,0,0) with non-zero mean : 91.34232
## ARIMA(1,0,0) with non-zero mean : -204.1363
## ARIMA(0,0,0) with zero mean : 87.18735
## ARIMA(2,0,0) with zero mean : -209.0011
## ARIMA(1,0,0) with zero mean : -208.7127
##
## Best model: ARIMA(2,0,0) with zero mean
## Series: .
## ARIMA(2,0,0) with zero mean
##
## Coefficients:
## ar1 ar2
## 0.7806 0.1971
## s.e. 0.0839 0.0852
##
## sigma^2 estimated as 0.01135: log likelihood=111.88
## AIC=-217.76 AICc=-217.58 BIC=-209
Same thing for the MA structure order selection.
#Using AIC as information criterion
Data$Avg %>% auto.arima(max.q = 2, max.p = 0, max.d = 0, trace = TRUE, ic = "aic")
##
## ARIMA(0,0,2) with non-zero mean : -104.6498
## ARIMA(0,0,0) with non-zero mean : 85.50236
## ARIMA(0,0,1) with non-zero mean : -29.1264
## ARIMA(0,0,0) with zero mean : 84.26737
## ARIMA(0,0,2) with zero mean : -106.0445
## ARIMA(0,0,1) with zero mean : -30.39957
##
## Best model: ARIMA(0,0,2) with zero mean
## Series: .
## ARIMA(0,0,2) with zero mean
##
## Coefficients:
## ma1 ma2
## 1.0832 0.6547
## s.e. 0.0638 0.0578
##
## sigma^2 estimated as 0.02591: log likelihood=56.02
## AIC=-106.04 AICc=-105.86 BIC=-97.28
#Using BIC as information criterion
Data$Avg %>% auto.arima(max.q = 2, max.p = 0, max.d = 0, trace = TRUE, ic = "bic")
##
## ARIMA(0,0,2) with non-zero mean : -92.96985
## ARIMA(0,0,0) with non-zero mean : 91.34232
## ARIMA(0,0,1) with non-zero mean : -20.36645
## ARIMA(0,0,0) with zero mean : 87.18735
## ARIMA(0,0,2) with zero mean : -97.28453
## ARIMA(0,0,1) with zero mean : -24.55961
##
## Best model: ARIMA(0,0,2) with zero mean
## Series: .
## ARIMA(0,0,2) with zero mean
##
## Coefficients:
## ma1 ma2
## 1.0832 0.6547
## s.e. 0.0638 0.0578
##
## sigma^2 estimated as 0.02591: log likelihood=56.02
## AIC=-106.04 AICc=-105.86 BIC=-97.28
ma(Data$Avg, 2, TRUE) %>% forecast(h=10)
## Warning in ets(object, lambda = lambda, biasadj = biasadj,
## allow.multiplicative.trend = allow.multiplicative.trend, : Missing values
## encountered. Using longest contiguous portion of time series
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 137 0.8674882 0.7986313 0.9363452 0.7621807 0.9727958
## 138 0.8674882 0.7701147 0.9648618 0.7185683 1.0164082
## 139 0.8674882 0.7482325 0.9867440 0.6851023 1.0498742
## 140 0.8674882 0.7297847 1.0051918 0.6568889 1.0780876
## 141 0.8674882 0.7135318 1.0214447 0.6320321 1.1029444
## 142 0.8674882 0.6988379 1.0361386 0.6095599 1.1254166
## 143 0.8674882 0.6853255 1.0496510 0.5888944 1.1460821
## 144 0.8674882 0.6727485 1.0622280 0.5696594 1.1653170
## 145 0.8674882 0.6609358 1.0740407 0.5515935 1.1833830
## 146 0.8674882 0.6497631 1.0852134 0.5345064 1.2004701
ma(Data$Avg, 2, TRUE) %>% forecast(h=10) %>% autoplot() +
ggtitle("Forecasts from MA(2)")
## Warning in ets(object, lambda = lambda, biasadj = biasadj,
## allow.multiplicative.trend = allow.multiplicative.trend, : Missing values
## encountered. Using longest contiguous portion of time series
