Abstract
Bees are essential for food production for humans and for the maintenance of natural ecosystems. This paper presents a proposal to predict the health level of honeybee colonies using data from internal and external beehive sensors and from in-loco inspections by beekeepers. The data set was obtained by gathering inspection information and internal and external sensors measurements, based on the date of collection. However, obtaining inspection data frequently is not feasible due to the stress caused to the beehive, especially in periods such as winter, where the beehive becomes more sensitive. As a solution, the beehives health status was obtained through a partitioning clustering method and then validated by in-loco inspection data already obtained. We propose a logistic regression model with an elastic net penalty, which consists of a fusion of lasso (l1) and ridge (l2) methods. We obtained a flexible and robust model compared to the usual logistic regression and a diagnostic tool that can avoid unnecessary inspections and, consequently, reduce the stress of the beehives.
Packages
Preprocessing
##
## iter imp variable
## 1 1 Brood_Temp Hive_Temp Weight Ext_Temperature DewPoint WindDirection WindSpeed
## 1 2 Brood_Temp Hive_Temp Weight Ext_Temperature DewPoint WindDirection WindSpeed
## 1 3 Brood_Temp Hive_Temp Weight Ext_Temperature DewPoint WindDirection WindSpeed
## 1 4 Brood_Temp Hive_Temp Weight Ext_Temperature DewPoint WindDirection WindSpeed
## 1 5 Brood_Temp Hive_Temp Weight Ext_Temperature DewPoint WindDirection WindSpeed
## 2 1 Brood_Temp Hive_Temp Weight Ext_Temperature DewPoint WindDirection WindSpeed
## 2 2 Brood_Temp Hive_Temp Weight Ext_Temperature DewPoint WindDirection WindSpeed
## 2 3 Brood_Temp Hive_Temp Weight Ext_Temperature DewPoint WindDirection WindSpeed
## 2 4 Brood_Temp Hive_Temp Weight Ext_Temperature DewPoint WindDirection WindSpeed
## 2 5 Brood_Temp Hive_Temp Weight Ext_Temperature DewPoint WindDirection WindSpeed
## 3 1 Brood_Temp Hive_Temp Weight Ext_Temperature DewPoint WindDirection WindSpeed
## 3 2 Brood_Temp Hive_Temp Weight Ext_Temperature DewPoint WindDirection WindSpeed
## 3 3 Brood_Temp Hive_Temp Weight Ext_Temperature DewPoint WindDirection WindSpeed
## 3 4 Brood_Temp Hive_Temp Weight Ext_Temperature DewPoint WindDirection WindSpeed
## 3 5 Brood_Temp Hive_Temp Weight Ext_Temperature DewPoint WindDirection WindSpeed
## 4 1 Brood_Temp Hive_Temp Weight Ext_Temperature DewPoint WindDirection WindSpeed
## 4 2 Brood_Temp Hive_Temp Weight Ext_Temperature DewPoint WindDirection WindSpeed
## 4 3 Brood_Temp Hive_Temp Weight Ext_Temperature DewPoint WindDirection WindSpeed
## 4 4 Brood_Temp Hive_Temp Weight Ext_Temperature DewPoint WindDirection WindSpeed
## 4 5 Brood_Temp Hive_Temp Weight Ext_Temperature DewPoint WindDirection WindSpeed
## 5 1 Brood_Temp Hive_Temp Weight Ext_Temperature DewPoint WindDirection WindSpeed
## 5 2 Brood_Temp Hive_Temp Weight Ext_Temperature DewPoint WindDirection WindSpeed
## 5 3 Brood_Temp Hive_Temp Weight Ext_Temperature DewPoint WindDirection WindSpeed
## 5 4 Brood_Temp Hive_Temp Weight Ext_Temperature DewPoint WindDirection WindSpeed
## 5 5 Brood_Temp Hive_Temp Weight Ext_Temperature DewPoint WindDirection WindSpeed
hide
Description of dataset
O conjunto de dados foi obtido pela união dos dados de sensores internos, externos e de inspeção através de um algoritmo criado em python
na ferramenta google colab
. E foi preprocessado (limpeza, consistência, imputação…) no software R
.
Algumas informações a respeito do dataset:
- Número total de observações:
35855
- Número de observações rotuladas (inspeção associada):
17435
- Número de observações não rotuladas (s/ inspeção associada):
18420
- Número de observações rotuladas (inspeção associada):
- Variables in study
- TurnDay:
- Type:
factor
. - Description: Turno do dia associado ao horário da medição.
- Missing Values:
0%
. - Prevalence: \
- Type:
- TurnDay:
Turno | Contagem | % |
---|---|---|
dia | 18107 | 50.5 |
noite | 17744 | 49.5 |
- Brood Temp:
- Type:
numeric
. - Description: Sensor de temperatura em ºC no centro da colméia.
- Missing Values:
0%
. - Visualization:\
- Type:
- Brood Humidity:
- Type:
numeric
. - Description: Sensor de umidade em … no cetro da colméia.
- Missing Values:
0%
. - Visualization:\
- Type:
- Hive Temp:
- Type:
numeric
. - Description: Sensor de temperatura em ºC na parede interna da colméia.
- Missing Values:
0%
. - Visualization:\
- Type:
- Hive Humidity:
- Type:
numeric
. - Description: Sensor de umidade em … na parede interna da colméia.
- Missing Values:
0%
. - Visualization:\
- Type:
- Weight:
- Type:
numeric
. - Description: Sensor de Peso da colméia.
- Missing Values:
0%
. - Visualization:\
- Type:
- Ext Temperature:
- Type:
numeric
. - Description: Sensor de temperatura em ºC na parte externa da colméia.
- Missing Values
0%
. - Visualization:\
- Type:
- Dew Point:
- Type:
numeric
. - Description: Ponto de Orvalho.
- Missing Values:
0%
. - Visualization:\
- Type:
- Wind Direction:
- Type:
numeric
. - Description: Direção do vento.
- Missing Values:
0%
. - Visualization:\
- Type:
- Wind Speed:
- Type:
numeric
. - Description: Velocidade do vento.
- Missing Values:
0%
. - Visualization:\
- Type:
- Brood:
- Type:
factor
. - Description: Todos os estágios da ninhada presentes em quantidades apropriadas.
- Missing Values:
51.37%
.
- Type:
- Bees:
- Type:
factor
. - Description: Abelhas adultas suficientes e com boa estrutura etária para cuidar das crias e realizar todas as tarefas da colônia.
- Missing Values:
51.37%
.
- Type:
- Queen:
- Type:
factor
. - Description: Uma rainha jovem e produtiva, presente.
- Missing Values:
51.37%
.
- Type:
- Food:
- Type:
factor
. - Description: Quantidade suficiente de água, forrageamento e alimento em estoque disponível.
- Missing Values:
51.37%
.
- Type:
- Stressors:
- Type:
factor
. - Description: Nenhum estressor aparente presente que poderia levar à redução da população da colônia e/ou afetar seu potencial de crescimento.
- Missing Values:
51.37%
.
- Type:
- Space:
- Type:
factor
. - Description: Espaço adequado para tamanho esperado da colônia à curto e médio prazo que seja sanitário, defensável e que possua espaço para os ovos.
- Missing Values:
51.37%
.
- Type:
- Dataset summary:
## TurnDay Brood_Temp Brood_Humidity Hive_Temp
## Length:35855 Min. :-3.467 Min. :22.00 Min. :-5.744
## Class :character 1st Qu.:22.133 1st Qu.:62.00 1st Qu.:21.961
## Mode :character Median :30.078 Median :67.00 Median :28.544
## Mean :27.201 Mean :66.21 Mean :26.443
## 3rd Qu.:33.528 3rd Qu.:71.00 3rd Qu.:33.144
## Max. :39.950 Max. :89.00 Max. :39.928
##
## Hive_Humidity Weight Ext_Temperature DewPoint
## Min. :19.00 Min. : 1.034 Min. :-10.00 Min. :-10.000
## 1st Qu.:60.00 1st Qu.: 23.101 1st Qu.: 2.50 1st Qu.: 1.170
## Median :66.00 Median : 28.050 Median : 12.80 Median : 7.200
## Mean :65.51 Mean : 28.011 Mean : 13.18 Mean : 8.264
## 3rd Qu.:72.00 3rd Qu.: 31.724 3rd Qu.: 22.80 3rd Qu.: 17.000
## Max. :93.00 Max. :129.936 Max. : 36.00 Max. : 20.000
##
## WindDirection WindSpeed Brood Bees
## Min. : 0.0 Min. : 0.00 Min. :0.000 Min. :0.000
## 1st Qu.: 0.0 1st Qu.: 0.00 1st Qu.:1.000 1st Qu.:1.000
## Median : 70.0 Median :15.00 Median :1.000 Median :1.000
## Mean :114.4 Mean :16.94 Mean :0.852 Mean :0.926
## 3rd Qu.:220.0 3rd Qu.:31.00 3rd Qu.:1.000 3rd Qu.:1.000
## Max. :360.0 Max. :99.00 Max. :1.000 Max. :1.000
## NA's :18420 NA's :18420
## Queen Food Stressors Space
## Min. :0.000 Min. :0.000 Min. :0.000 Min. :0.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:0.000 1st Qu.:0.000
## Median :1.000 Median :1.000 Median :0.000 Median :1.000
## Mean :0.912 Mean :0.958 Mean :0.441 Mean :0.724
## 3rd Qu.:1.000 3rd Qu.:1.000 3rd Qu.:1.000 3rd Qu.:1.000
## Max. :1.000 Max. :1.000 Max. :1.000 Max. :1.000
## NA's :18420 NA's :18420 NA's :18420 NA's :18420
Classificador para “completar” o conjunto de dados
O Classificador escolhido foi Florestas Aleatórias (Random Forest). Os hiperparâmetros escolhidos foram: * mtry = 5 * splitrule = gini * min.node.size = 1 * num.trees = 200
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction 1 2 3 4 5 6
## 1 1.6 0.0 0.0 0.0 0.0 0.0
## 2 0.1 3.2 0.0 0.0 0.0 0.0
## 3 0.0 0.0 1.8 0.0 0.1 0.0
## 4 0.0 0.2 0.2 16.4 0.9 0.5
## 5 0.0 0.3 0.4 2.3 45.4 3.1
## 6 0.0 0.0 0.1 0.9 1.8 20.6
##
## Accuracy (average) : 0.8899
Completando o dataset
Clustering Analysis
- Escolhendo o melhor número de clusters por 2 métodos:
Calinski-Harabasz (CH)
eAverage Silhouette Width (ASW)
. A escolha se dá pelo número de cluster que maximiza o “score” dos dois métodos, no caso o melhor número de clusters é2
. A técnica de clusterização utilizada no artigo é oCLARA (Clustering Large Applications)
Principal Component Analysis (PCA)
- Número de observações:
35855
. - Número de variáveis: `
9
. - Teste de Esfericidade (H0: Variáveis Independentes)
## Bartlett's Test of Sphericity
##
## Call: bart_spher(x = dataset_pca)
##
## X2 = 169022.455
## df = 36
## p-value < 2.22e-16
- Gráfico de Pareto para variância explicada
##
## Pareto chart analysis for summary(pca)$importance[2, ]
## Frequency Cum.Freq. Percentage Cum.Percent.
## PC1 0.36470 0.36470 36.47000 36.47000
## PC2 0.18867 0.55337 18.86700 55.33700
## PC3 0.15571 0.70908 15.57100 70.90800
## PC4 0.10423 0.81331 10.42300 81.33100
## PC5 0.06538 0.87869 6.53800 87.86900
## PC6 0.05817 0.93686 5.81700 93.68600
## PC7 0.03965 0.97651 3.96500 97.65100
## PC8 0.01255 0.98906 1.25500 98.90600
## PC9 0.01094 1.00000 1.09400 100.00000
- Gráficos de contribuição das variáveis e observações.
fviz_pca_var(a, col.var = "contrib",
gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
repel = TRUE)
fviz_pca_ind(a,
geom.ind = "point", # show points only (nbut not "text")
col.ind = dataset_completo$Code, # color by groups
addEllipses = TRUE, # Concentration ellipses
legend.title = "Code Health"
)
Clustering
Como obtido o número de clusters ideal é 2, assim, iremos agrupar os 6 fatores em dois grupos.
- Grupo 1 = 1 Fator e Grupo 2 = 5 Fatores
\[\frac{6!}{5!1!} = 6\text{ combinações}\] * Grupo 1 = 2 Fatores e Grupo 2 = 4 Fatores
\[\frac{6!}{4!2!} = 15\text{ combinações}\] * Grupo 1 = 3 Fatores e Grupo 2 = 3 Fatores
\[\frac{6!}{3!3!2} = 10\text{ combinações}\] Logo, o número total de combinações é \(6+15+10 = 31\).
getCode <- function(soma, comb){
comb = unlist(strsplit(comb, " "))
for(i in 1:2){
arr = as.integer(unlist(strsplit(comb[i], "")))
if(as.integer(soma) %in% arr){
code = i
}
}
return(code - 1)
}
combs <- c("1 23456", "2 13456", "3 12456", "4 12356", "5 12346", "6 12345",
"12 3456", "13 2456", "14 2356", "15 2346", "16 2345", "23 1456",
"24 1356", "25 1346", "26 1345", "34 1256", "35 1246", "36 1245",
"45 1236", "46 1235", "56 1234", "123 456", "124 356", "125 346",
"126 345", "134 256", "135 246", "136 245", "145 236", "146 235",
"156 234")
Ajustando o modelo de Regressão Logística Elastic Net
set.seed(2)
ctrl <- trainControl(method="cv", returnResamp="all", classProbs=TRUE, summaryFunction=twoClassSummary)
for(comb in combs){
dataset_train <- dataset_classificador_completo %>%
mutate(index = 1:n()) %>%
group_by(index) %>%
mutate(Code = getCode(Code, comb)) %>%
ungroup() %>%
mutate(Code = as_factor(Code),
index = NULL)
levels(dataset_train$Code) <- make.names(levels(factor(dataset_train$Code)))
glmnet_model <- train(Code~., data = dataset_train, method = "glmnet",
preProcess = c("center","scale"),
trControl = ctrl, metric = "ROC",
tuneGrid = expand.grid(alpha = seq(0, 1,
by = 0.01),
lambda = seq(50, 0,
by = -1)))
glmnet_model
plot(glmnet_model)
print(print(confusionMatrix(glmnet_model)))
}
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 0.0 0.3
## X1 1.7 98.0
##
## Accuracy (average) : 0.9807
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 0.0 0.3
## X1 1.7 98.0
##
## Accuracy (average) : 0.9807
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 0.6 0.2
## X1 3.1 96.0
##
## Accuracy (average) : 0.9666
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 0.6 0.2
## X1 3.1 96.0
##
## Accuracy (average) : 0.9666
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 0.0 0.1
## X1 2.5 97.4
##
## Accuracy (average) : 0.974
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 0.0 0.1
## X1 2.5 97.4
##
## Accuracy (average) : 0.974
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 0.1 0.0
## X1 19.5 80.4
##
## Accuracy (average) : 0.8047
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 0.1 0.0
## X1 19.5 80.4
##
## Accuracy (average) : 0.8047
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 29.0 19.4
## X1 19.2 32.4
##
## Accuracy (average) : 0.6141
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 29.0 19.4
## X1 19.2 32.4
##
## Accuracy (average) : 0.6141
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 0.0 0.0
## X1 24.2 75.8
##
## Accuracy (average) : 0.7582
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 0.0 0.0
## X1 24.2 75.8
##
## Accuracy (average) : 0.7582
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 1.4 0.4
## X1 4.0 94.2
##
## Accuracy (average) : 0.9562
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 1.4 0.4
## X1 4.0 94.2
##
## Accuracy (average) : 0.9562
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 0.1 0.4
## X1 4.1 95.3
##
## Accuracy (average) : 0.9548
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 0.1 0.4
## X1 4.1 95.3
##
## Accuracy (average) : 0.9548
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 0.2 0.3
## X1 21.1 78.4
##
## Accuracy (average) : 0.7855
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 0.2 0.3
## X1 21.1 78.4
##
## Accuracy (average) : 0.7855
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 32.2 22.2
## X1 17.7 27.8
##
## Accuracy (average) : 0.6005
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 32.2 22.2
## X1 17.7 27.8
##
## Accuracy (average) : 0.6005
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 0.0 0.0
## X1 25.9 74.1
##
## Accuracy (average) : 0.7412
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 0.0 0.0
## X1 25.9 74.1
##
## Accuracy (average) : 0.7412
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 0.7 0.3
## X1 5.6 93.3
##
## Accuracy (average) : 0.9409
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 0.7 0.3
## X1 5.6 93.3
##
## Accuracy (average) : 0.9409
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 1.6 1.0
## X1 21.7 75.7
##
## Accuracy (average) : 0.773
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 1.6 1.0
## X1 21.7 75.7
##
## Accuracy (average) : 0.773
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 36.5 25.7
## X1 15.5 22.3
##
## Accuracy (average) : 0.5879
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 36.5 25.7
## X1 15.5 22.3
##
## Accuracy (average) : 0.5879
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 0.3 0.6
## X1 27.7 71.4
##
## Accuracy (average) : 0.7172
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 0.3 0.6
## X1 27.7 71.4
##
## Accuracy (average) : 0.7172
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 0.3 0.2
## X1 21.9 77.7
##
## Accuracy (average) : 0.7792
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 0.3 0.2
## X1 21.9 77.7
##
## Accuracy (average) : 0.7792
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 33.5 22.6
## X1 17.2 26.6
##
## Accuracy (average) : 0.6015
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 33.5 22.6
## X1 17.2 26.6
##
## Accuracy (average) : 0.6015
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 0.0 0.1
## X1 26.7 73.2
##
## Accuracy (average) : 0.7316
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 0.0 0.1
## X1 26.7 73.2
##
## Accuracy (average) : 0.7316
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 65.6 29.6
## X1 2.2 2.6
##
## Accuracy (average) : 0.6818
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 65.6 29.6
## X1 2.2 2.6
##
## Accuracy (average) : 0.6818
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 14.2 11.1
## X1 29.6 45.2
##
## Accuracy (average) : 0.5932
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 14.2 11.1
## X1 29.6 45.2
##
## Accuracy (average) : 0.5932
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 69.7 22.5
## X1 2.7 5.1
##
## Accuracy (average) : 0.7487
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 69.7 22.5
## X1 2.7 5.1
##
## Accuracy (average) : 0.7487
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 1.8 0.5
## X1 6.2 91.5
##
## Accuracy (average) : 0.9331
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 1.8 0.5
## X1 6.2 91.5
##
## Accuracy (average) : 0.9331
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 3.5 1.8
## X1 21.5 73.2
##
## Accuracy (average) : 0.7672
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 3.5 1.8
## X1 21.5 73.2
##
## Accuracy (average) : 0.7672
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 39.8 27.8
## X1 13.9 18.5
##
## Accuracy (average) : 0.5829
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 39.8 27.8
## X1 13.9 18.5
##
## Accuracy (average) : 0.5829
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 0.9 1.5
## X1 28.7 68.9
##
## Accuracy (average) : 0.6983
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 0.9 1.5
## X1 28.7 68.9
##
## Accuracy (average) : 0.6983
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 1.1 1.0
## X1 22.7 75.1
##
## Accuracy (average) : 0.7625
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 1.1 1.0
## X1 22.7 75.1
##
## Accuracy (average) : 0.7625
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 37.1 25.5
## X1 15.4 22.0
##
## Accuracy (average) : 0.591
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 37.1 25.5
## X1 15.4 22.0
##
## Accuracy (average) : 0.591
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 0.1 0.2
## X1 28.4 71.4
##
## Accuracy (average) : 0.7148
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 0.1 0.2
## X1 28.4 71.4
##
## Accuracy (average) : 0.7148
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 68.7 30.0
## X1 0.8 0.5
##
## Accuracy (average) : 0.6925
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 68.7 30.0
## X1 0.8 0.5
##
## Accuracy (average) : 0.6925
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 0.0 0.0
## X1 45.5 54.5
##
## Accuracy (average) : 0.5454
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 0.0 0.0
## X1 45.5 54.5
##
## Accuracy (average) : 0.5454
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 72.4 22.9
## X1 1.7 3.0
##
## Accuracy (average) : 0.7541
##
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction X0 X1
## X0 72.4 22.9
## X1 1.7 3.0
##
## Accuracy (average) : 0.7541