## Installing package into '/storage01/users/izf381/R/x86_64-redhat-linux-gnu-library/3.6'
## (as 'lib' is unspecified)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
## recode
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Loading required package: ggplot2
## Registered S3 methods overwritten by 'ggplot2':
## method from
## [.quosures rlang
## c.quosures rlang
## print.quosures rlang
## Loading required package: ggpubr
## Loading required package: magrittr
## Call: survfit(formula = Surv(time = job.loss.age, event = job_transition) ~
## 1, data = addhealth)
##
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 19 7101 114 0.984 0.00149 0.981 0.987
## 20 6987 338 0.936 0.00290 0.931 0.942
## 21 6649 344 0.888 0.00374 0.881 0.895
## 22 6305 469 0.822 0.00454 0.813 0.831
## 23 5836 400 0.766 0.00503 0.756 0.775
## 24 5436 333 0.719 0.00534 0.708 0.729
## 25 5102 84 0.707 0.00540 0.696 0.717
## 26 4981 27 0.703 0.00542 0.692 0.714
## $time
## [1] 19.5 20.5 21.5 22.5 23.5 24.5 25.5
##
## $haz
## [1] 0.049584812 0.053123498 0.077297339 0.071002134 0.063216305 0.016656801
## [7] 0.005818767
##
## $var
## [1] 7.275614e-06 8.205726e-06 1.274596e-05 1.260855e-05 1.200492e-05
## [6] 3.303130e-06 1.256180e-06
## time haz var
## 1 19.5 0.049584812 7.275614e-06
## 2 20.5 0.053123498 8.205726e-06
## 3 21.5 0.077297339 1.274596e-05
## 4 22.5 0.071002134 1.260855e-05
## 5 23.5 0.063216305 1.200492e-05
## 6 24.5 0.016656801 3.303130e-06
## 7 25.5 0.005818767 1.256180e-06
### 5) Carry out the following analysis #### a. Kaplan-Meier survival analysis of the outcome
## Call: survfit(formula = Surv(job.loss.age, job_transition) ~ 1, data = addhealth)
##
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 19 7101 114 0.984 0.00149 0.981 0.987
## 20 6987 338 0.936 0.00290 0.931 0.942
## 21 6649 344 0.888 0.00374 0.881 0.895
## 22 6305 469 0.822 0.00454 0.813 0.831
## 23 5836 400 0.766 0.00503 0.756 0.775
## 24 5436 333 0.719 0.00534 0.708 0.729
## 25 5102 84 0.707 0.00540 0.696 0.717
## 26 4981 27 0.703 0.00542 0.692 0.714
## Call: survfit(formula = Surv(job.loss.age, job_transition) ~ sexorient,
## data = addhealth)
##
## sexorient=a_straight
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 19 6866 111 0.984 0.00152 0.981 0.987
## 20 6755 320 0.937 0.00293 0.932 0.943
## 21 6435 330 0.889 0.00379 0.882 0.897
## 22 6105 450 0.824 0.00460 0.815 0.833
## 23 5655 386 0.767 0.00510 0.757 0.777
## 24 5269 318 0.721 0.00541 0.711 0.732
## 25 4950 79 0.710 0.00548 0.699 0.720
## 26 4835 26 0.706 0.00550 0.695 0.717
##
## sexorient=b_bisexual
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 19 122 3 0.975 0.0140 0.948 1.000
## 20 119 9 0.902 0.0270 0.850 0.956
## 21 110 10 0.820 0.0348 0.754 0.891
## 22 100 15 0.697 0.0416 0.620 0.783
## 23 85 2 0.680 0.0422 0.602 0.768
## 24 83 6 0.631 0.0437 0.551 0.723
## 25 77 3 0.607 0.0442 0.526 0.700
## 26 74 1 0.598 0.0444 0.517 0.692
##
## sexorient=c_LGB
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 20 113 9 0.920 0.0255 0.872 0.972
## 21 104 4 0.885 0.0300 0.828 0.946
## 22 100 4 0.850 0.0336 0.786 0.918
## 23 96 12 0.743 0.0411 0.667 0.828
## 24 84 9 0.664 0.0444 0.582 0.757
## 25 75 2 0.646 0.0450 0.564 0.740
## observed expected o-e
## a_straight 2020 2042.75755 -22.757546
## b_bisexual 49 33.01654 15.983458
## c_LGB 40 33.22591 6.774089
## Call: survfit(formula = Surv(time = job.loss.age, event = job_transition) ~
## sexorient + sex, data = addhealth)
##
## sexorient=a_straight, sex=a_male
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 19 3245 63 0.981 0.00242 0.976 0.985
## 20 3182 160 0.931 0.00444 0.923 0.940
## 21 3022 173 0.878 0.00575 0.867 0.889
## 22 2849 251 0.801 0.00701 0.787 0.814
## 23 2598 213 0.735 0.00775 0.720 0.750
## 24 2385 189 0.677 0.00821 0.661 0.693
## 25 2196 47 0.662 0.00830 0.646 0.679
## 26 2140 21 0.656 0.00834 0.640 0.672
##
## sexorient=a_straight, sex=b_female
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 19 3621 48 0.987 0.00190 0.983 0.990
## 20 3573 160 0.943 0.00387 0.935 0.950
## 21 3413 157 0.899 0.00500 0.889 0.909
## 22 3256 199 0.844 0.00603 0.833 0.856
## 23 3057 173 0.796 0.00669 0.783 0.810
## 24 2884 129 0.761 0.00709 0.747 0.775
## 25 2754 32 0.752 0.00718 0.738 0.766
## 26 2695 5 0.751 0.00719 0.737 0.765
##
## sexorient=b_bisexual, sex=a_male
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 19 19 1 0.947 0.0512 0.852 1.000
## 20 18 1 0.895 0.0704 0.767 1.000
## 21 17 1 0.842 0.0837 0.693 1.000
## 24 16 2 0.737 0.1010 0.563 0.964
##
## sexorient=b_bisexual, sex=b_female
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 19 103 2 0.981 0.0136 0.954 1.000
## 20 101 8 0.903 0.0292 0.848 0.962
## 21 93 9 0.816 0.0382 0.744 0.894
## 22 84 15 0.670 0.0463 0.585 0.767
## 23 69 2 0.650 0.0470 0.565 0.749
## 24 67 4 0.612 0.0480 0.524 0.713
## 25 63 3 0.583 0.0486 0.495 0.686
## 26 60 1 0.573 0.0487 0.485 0.677
##
## sexorient=c_LGB, sex=a_male
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 20 71 4 0.944 0.0274 0.892 0.999
## 21 67 1 0.930 0.0304 0.872 0.991
## 22 66 4 0.873 0.0395 0.799 0.954
## 23 62 8 0.761 0.0506 0.668 0.867
## 24 54 6 0.676 0.0555 0.576 0.794
## 25 48 2 0.648 0.0567 0.546 0.769
##
## sexorient=c_LGB, sex=b_female
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 20 42 5 0.881 0.0500 0.788 0.985
## 21 37 3 0.810 0.0606 0.699 0.937
## 23 34 4 0.714 0.0697 0.590 0.865
## 24 30 3 0.643 0.0739 0.513 0.805
#Part B #Parametric models ### 1) Carry out the following analysis: Define your outcome as in part A. Also consider what covariates are hypothesized to affect the outcome variable. Define these and construct a parametric model for your outcome.
####The outcome variable is the transition of employement in Wave 3 to unemployment (fired, layed off, let go) in Wave 4 ####The predictior variables are chosen based on previous literature and what may effect lossing a job for LGB individuals. The variables are education, depression, insurance status, getting beaten up, alcohol consumption, general health, race/ethnicity, sex, how a job was lost, sexual orientation, unable to pay utilities, and job satisfaction
## Loading required package: grid
## Loading required package: Matrix
##
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
##
## dotchart
## Stratified 1 - level Cluster Sampling design (with replacement)
## With (130) clusters.
## svydesign(ids = ~psuscid, strata = ~region, weights = ~GSWGT4,
## data = addhealth, nest = T)
## Call:
## svycoxph(formula = Surv(time = job.loss.age, event = job_transition) ~
## sex + sexorient, design = des2)
##
## n= 7101, number of events= 2109
##
## coef exp(coef) se(coef) z Pr(>|z|)
## sexb_female -0.40943 0.66403 0.05377 -7.615 2.64e-14 ***
## sexorientb_bisexual 0.55580 1.74333 0.17214 3.229 0.00124 **
## sexorientc_LGB 0.10467 1.11034 0.21069 0.497 0.61934
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## sexb_female 0.664 1.5060 0.5976 0.7378
## sexorientb_bisexual 1.743 0.5736 1.2441 2.4429
## sexorientc_LGB 1.110 0.9006 0.7347 1.6780
##
## Concordance= 0.555 (se = 0.007 )
## Likelihood ratio test= NA on 3 df, p=NA
## Wald test = 69.8 on 3 df, p=5e-15
## Score (logrank) test = NA on 3 df, p=NA
###Cox model with outcome and predictor variables.
## Stratified 1 - level Cluster Sampling design (with replacement)
## With (130) clusters.
## svydesign(ids = ~psuscid, strata = ~region, weights = ~GSWGT4,
## data = addhealth, nest = T)
## Call:
## svycoxph(formula = Surv(time = job.loss.age, event = job_transition) ~
## sex + racethnic + sexorient + educ + unable_pay_utilities +
## insurance_statusW4 + general_health + depressionW4 +
## alcohol_day_permonthW4 + leave_job + job_satisfaction +
## beaten_upW4, design = des2)
##
## n= 7101, number of events= 2109
##
## coef exp(coef) se(coef) z
## sexb_female -0.335328 0.715103 0.060652 -5.529
## racethnicb-nhblack 0.252315 1.287002 0.088078 2.865
## racethnicc-hispanic -0.001349 0.998652 0.120087 -0.011
## racethnicd-asian -0.281351 0.754763 0.143848 -1.956
## racethnice-native_american 0.392680 1.480944 0.333665 1.177
## racethnicf-other 0.356611 1.428481 0.332484 1.073
## sexorientb_bisexual 0.324764 1.383704 0.175884 1.846
## sexorientc_LGB 0.149616 1.161388 0.200128 0.748
## educb_highschool_grad -0.135556 0.873230 0.102126 -1.327
## educc_college_bach -0.604396 0.546404 0.147919 -4.086
## educd_college+ -1.165803 0.311672 0.157958 -7.380
## unable_pay_utilitiesb_yes 0.322562 1.380661 0.068373 4.718
## insurance_statusW4b_yes_insurance -0.425704 0.653309 0.062529 -6.808
## general_healthb_poor/bad 0.150772 1.162731 0.097135 1.552
## depressionW4b_yes 0.174849 1.191066 0.082055 2.131
## alcohol_day_permonthW4b_1or2days/week -0.003821 0.996186 0.072122 -0.053
## alcohol_day_permonthW4c_3to5days/week -0.005482 0.994533 0.094637 -0.058
## alcohol_day_permonthW4d_daily 0.235969 1.266135 0.137049 1.722
## leave_jobb_health -1.179450 0.307448 0.218042 -5.409
## leave_jobc_other -0.928580 0.395114 0.135977 -6.829
## leave_jobd_skip -0.805064 0.447059 0.103178 -7.803
## job_satisfactionb_neutral 0.111726 1.118206 0.080248 1.392
## job_satisfactionc_dissatisfied 0.199357 1.220618 0.094520 2.109
## beaten_upW4b_yes 0.019293 1.019480 0.099590 0.194
## Pr(>|z|)
## sexb_female 3.22e-08 ***
## racethnicb-nhblack 0.00417 **
## racethnicc-hispanic 0.99103
## racethnicd-asian 0.05048 .
## racethnice-native_american 0.23925
## racethnicf-other 0.28346
## sexorientb_bisexual 0.06483 .
## sexorientc_LGB 0.45470
## educb_highschool_grad 0.18440
## educc_college_bach 4.39e-05 ***
## educd_college+ 1.58e-13 ***
## unable_pay_utilitiesb_yes 2.39e-06 ***
## insurance_statusW4b_yes_insurance 9.89e-12 ***
## general_healthb_poor/bad 0.12062
## depressionW4b_yes 0.03310 *
## alcohol_day_permonthW4b_1or2days/week 0.95775
## alcohol_day_permonthW4c_3to5days/week 0.95380
## alcohol_day_permonthW4d_daily 0.08511 .
## leave_jobb_health 6.33e-08 ***
## leave_jobc_other 8.55e-12 ***
## leave_jobd_skip 6.06e-15 ***
## job_satisfactionb_neutral 0.16384
## job_satisfactionc_dissatisfied 0.03493 *
## beaten_upW4b_yes 0.84639
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95
## sexb_female 0.7151 1.3984 0.6350
## racethnicb-nhblack 1.2870 0.7770 1.0829
## racethnicc-hispanic 0.9987 1.0014 0.7892
## racethnicd-asian 0.7548 1.3249 0.5693
## racethnice-native_american 1.4809 0.6752 0.7701
## racethnicf-other 1.4285 0.7000 0.7445
## sexorientb_bisexual 1.3837 0.7227 0.9802
## sexorientc_LGB 1.1614 0.8610 0.7846
## educb_highschool_grad 0.8732 1.1452 0.7148
## educc_college_bach 0.5464 1.8301 0.4089
## educd_college+ 0.3117 3.2085 0.2287
## unable_pay_utilitiesb_yes 1.3807 0.7243 1.2075
## insurance_statusW4b_yes_insurance 0.6533 1.5307 0.5780
## general_healthb_poor/bad 1.1627 0.8600 0.9612
## depressionW4b_yes 1.1911 0.8396 1.0141
## alcohol_day_permonthW4b_1or2days/week 0.9962 1.0038 0.8649
## alcohol_day_permonthW4c_3to5days/week 0.9945 1.0055 0.8262
## alcohol_day_permonthW4d_daily 1.2661 0.7898 0.9679
## leave_jobb_health 0.3074 3.2526 0.2005
## leave_jobc_other 0.3951 2.5309 0.3027
## leave_jobd_skip 0.4471 2.2368 0.3652
## job_satisfactionb_neutral 1.1182 0.8943 0.9555
## job_satisfactionc_dissatisfied 1.2206 0.8193 1.0142
## beaten_upW4b_yes 1.0195 0.9809 0.8387
## upper .95
## sexb_female 0.8054
## racethnicb-nhblack 1.5295
## racethnicc-hispanic 1.2637
## racethnicd-asian 1.0006
## racethnice-native_american 2.8481
## racethnicf-other 2.7408
## sexorientb_bisexual 1.9532
## sexorientc_LGB 1.7192
## educb_highschool_grad 1.0667
## educc_college_bach 0.7302
## educd_college+ 0.4248
## unable_pay_utilitiesb_yes 1.5787
## insurance_statusW4b_yes_insurance 0.7385
## general_healthb_poor/bad 1.4066
## depressionW4b_yes 1.3989
## alcohol_day_permonthW4b_1or2days/week 1.1474
## alcohol_day_permonthW4c_3to5days/week 1.1972
## alcohol_day_permonthW4d_daily 1.6563
## leave_jobb_health 0.4714
## leave_jobc_other 0.5158
## leave_jobd_skip 0.5473
## job_satisfactionb_neutral 1.3087
## job_satisfactionc_dissatisfied 1.4690
## beaten_upW4b_yes 1.2392
##
## Concordance= 0.671 (se = 0.008 )
## Likelihood ratio test= NA on 24 df, p=NA
## Wald test = 576 on 24 df, p=<2e-16
## Score (logrank) test = NA on 24 df, p=NA
## Response sexb_female :
##
## Call:
## lm(formula = sexb_female ~ des2$variables$job.loss.age[des2$variables$job_transition ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.4797 -0.4563 -0.4427 0.5445 0.5634
##
## Coefficients:
## Estimate
## (Intercept) 0.0703658
## des2$variables$job.loss.age[des2$variables$job_transition == 1] -0.0008703
## Std. Error
## (Intercept) 0.1467977
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.0066452
## t value
## (Intercept) 0.479
## des2$variables$job.loss.age[des2$variables$job_transition == 1] -0.131
## Pr(>|t|)
## (Intercept) 0.632
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.896
##
## Residual standard error: 0.4991 on 2107 degrees of freedom
## Multiple R-squared: 8.14e-06, Adjusted R-squared: -0.0004665
## F-statistic: 0.01715 on 1 and 2107 DF, p-value: 0.8958
##
##
## Response racethnicb-nhblack :
##
## Call:
## lm(formula = `racethnicb-nhblack` ~ des2$variables$job.loss.age[des2$variables$job_transition ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.2788 -0.2346 -0.2152 -0.1860 0.8233
##
## Coefficients:
## Estimate
## (Intercept) -0.172513
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.010885
## Std. Error
## (Intercept) 0.122445
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.005543
## t value
## (Intercept) -1.409
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 1.964
## Pr(>|t|)
## (Intercept) 0.1590
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.0497 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4163 on 2107 degrees of freedom
## Multiple R-squared: 0.001827, Adjusted R-squared: 0.001353
## F-statistic: 3.856 on 1 and 2107 DF, p-value: 0.04969
##
##
## Response racethnicc-hispanic :
##
## Call:
## lm(formula = `racethnicc-hispanic` ~ des2$variables$job.loss.age[des2$variables$job_transition ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.07292 -0.06937 -0.06764 -0.06555 0.93857
##
## Coefficients:
## Estimate
## (Intercept) 0.041320
## des2$variables$job.loss.age[des2$variables$job_transition == 1] -0.001475
## Std. Error
## (Intercept) 0.073982
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.003349
## t value
## (Intercept) 0.559
## des2$variables$job.loss.age[des2$variables$job_transition == 1] -0.440
## Pr(>|t|)
## (Intercept) 0.577
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.660
##
## Residual standard error: 0.2515 on 2107 degrees of freedom
## Multiple R-squared: 9.201e-05, Adjusted R-squared: -0.0003826
## F-statistic: 0.1939 on 1 and 2107 DF, p-value: 0.6597
##
##
## Response racethnicd-asian :
##
## Call:
## lm(formula = `racethnicd-asian` ~ des2$variables$job.loss.age[des2$variables$job_transition ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.05253 -0.04634 -0.04225 -0.03812 0.96746
##
## Coefficients:
## Estimate
## (Intercept) 0.081687
## des2$variables$job.loss.age[des2$variables$job_transition == 1] -0.002760
## Std. Error
## (Intercept) 0.059440
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.002691
## t value
## (Intercept) 1.374
## des2$variables$job.loss.age[des2$variables$job_transition == 1] -1.026
## Pr(>|t|)
## (Intercept) 0.169
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.305
##
## Residual standard error: 0.2021 on 2107 degrees of freedom
## Multiple R-squared: 0.0004991, Adjusted R-squared: 2.472e-05
## F-statistic: 1.052 on 1 and 2107 DF, p-value: 0.3051
##
##
## Response racethnice-native_american :
##
## Call:
## lm(formula = `racethnice-native_american` ~ des2$variables$job.loss.age[des2$variables$job_transition ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.01323 -0.00879 -0.00754 -0.00610 0.99618
##
## Coefficients:
## Estimate
## (Intercept) -0.025103
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.001138
## Std. Error
## (Intercept) 0.025534
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.001156
## t value
## (Intercept) -0.983
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.985
## Pr(>|t|)
## (Intercept) 0.326
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.325
##
## Residual standard error: 0.0868 on 2107 degrees of freedom
## Multiple R-squared: 0.0004601, Adjusted R-squared: -1.426e-05
## F-statistic: 0.9699 on 1 and 2107 DF, p-value: 0.3248
##
##
## Response racethnicf-other :
##
## Call:
## lm(formula = `racethnicf-other` ~ des2$variables$job.loss.age[des2$variables$job_transition ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.01087 -0.00923 -0.00837 -0.00787 0.99250
##
## Coefficients:
## Estimate
## (Intercept) -0.0062256
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.0002495
## Std. Error
## (Intercept) 0.0270698
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.0012254
## t value
## (Intercept) -0.230
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.204
## Pr(>|t|)
## (Intercept) 0.818
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.839
##
## Residual standard error: 0.09203 on 2107 degrees of freedom
## Multiple R-squared: 1.967e-05, Adjusted R-squared: -0.0004549
## F-statistic: 0.04144 on 1 and 2107 DF, p-value: 0.8387
##
##
## Response sexorientb_bisexual :
##
## Call:
## lm(formula = sexorientb_bisexual ~ des2$variables$job.loss.age[des2$variables$job_transition ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.04795 -0.02975 -0.02294 -0.01626 0.98966
##
## Coefficients:
## Estimate
## (Intercept) -0.131377
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.005920
## Std. Error
## (Intercept) 0.044236
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.002002
## t value
## (Intercept) -2.970
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 2.956
## Pr(>|t|)
## (Intercept) 0.00301
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.00315
##
## (Intercept) **
## des2$variables$job.loss.age[des2$variables$job_transition == 1] **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1504 on 2107 degrees of freedom
## Multiple R-squared: 0.00413, Adjusted R-squared: 0.003658
## F-statistic: 8.739 on 1 and 2107 DF, p-value: 0.00315
##
##
## Response sexorientc_LGB :
##
## Call:
## lm(formula = sexorientc_LGB ~ des2$variables$job.loss.age[des2$variables$job_transition ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.02143 -0.01972 -0.01911 -0.01813 0.98432
##
## Coefficients:
## Estimate
## (Intercept) 0.012146
## des2$variables$job.loss.age[des2$variables$job_transition == 1] -0.000571
## Std. Error
## (Intercept) 0.040148
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.001817
## t value
## (Intercept) 0.303
## des2$variables$job.loss.age[des2$variables$job_transition == 1] -0.314
## Pr(>|t|)
## (Intercept) 0.762
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.753
##
## Residual standard error: 0.1365 on 2107 degrees of freedom
## Multiple R-squared: 4.685e-05, Adjusted R-squared: -0.0004277
## F-statistic: 0.09871 on 1 and 2107 DF, p-value: 0.7534
##
##
## Response educb_highschool_grad :
##
## Call:
## lm(formula = educb_highschool_grad ~ des2$variables$job.loss.age[des2$variables$job_transition ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7332 -0.6565 0.3101 0.3323 0.3723
##
## Coefficients:
## Estimate
## (Intercept) -0.259099
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.011126
## Std. Error
## (Intercept) 0.137804
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.006238
## t value
## (Intercept) -1.880
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 1.784
## Pr(>|t|)
## (Intercept) 0.0602 .
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.0746 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4685 on 2107 degrees of freedom
## Multiple R-squared: 0.001507, Adjusted R-squared: 0.001034
## F-statistic: 3.181 on 1 and 2107 DF, p-value: 0.07464
##
##
## Response educc_college_bach :
##
## Call:
## lm(formula = educc_college_bach ~ des2$variables$job.loss.age[des2$variables$job_transition ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.2092 -0.1758 -0.1633 -0.1491 0.8709
##
## Coefficients:
## Estimate
## (Intercept) 0.157660
## des2$variables$job.loss.age[des2$variables$job_transition == 1] -0.006446
## Std. Error
## (Intercept) 0.110409
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.004998
## t value
## (Intercept) 1.428
## des2$variables$job.loss.age[des2$variables$job_transition == 1] -1.290
## Pr(>|t|)
## (Intercept) 0.153
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.197
##
## Residual standard error: 0.3753 on 2107 degrees of freedom
## Multiple R-squared: 0.0007889, Adjusted R-squared: 0.0003147
## F-statistic: 1.664 on 1 and 2107 DF, p-value: 0.1973
##
##
## Response educd_college+ :
##
## Call:
## lm(formula = `educd_college+` ~ des2$variables$job.loss.age[des2$variables$job_transition ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.08448 -0.06766 -0.06264 -0.05482 0.96022
##
## Coefficients:
## Estimate
## (Intercept) 0.103726
## des2$variables$job.loss.age[des2$variables$job_transition == 1] -0.004142
## Std. Error
## (Intercept) 0.071460
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.003235
## t value
## (Intercept) 1.452
## des2$variables$job.loss.age[des2$variables$job_transition == 1] -1.280
## Pr(>|t|)
## (Intercept) 0.147
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.201
##
## Residual standard error: 0.2429 on 2107 degrees of freedom
## Multiple R-squared: 0.0007775, Adjusted R-squared: 0.0003033
## F-statistic: 1.64 on 1 and 2107 DF, p-value: 0.2005
##
##
## Response unable_pay_utilitiesb_yes :
##
## Call:
## lm(formula = unable_pay_utilitiesb_yes ~ des2$variables$job.loss.age[des2$variables$job_transition ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.2395 -0.2209 -0.2062 -0.1819 0.8330
##
## Coefficients:
## Estimate
## (Intercept) -0.068553
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.002930
## Std. Error
## (Intercept) 0.120101
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.005437
## t value
## (Intercept) -0.571
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.539
## Pr(>|t|)
## (Intercept) 0.568
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.590
##
## Residual standard error: 0.4083 on 2107 degrees of freedom
## Multiple R-squared: 0.0001378, Adjusted R-squared: -0.0003368
## F-statistic: 0.2904 on 1 and 2107 DF, p-value: 0.59
##
##
## Response insurance_statusW4b_yes_insurance :
##
## Call:
## lm(formula = insurance_statusW4b_yes_insurance ~ des2$variables$job.loss.age[des2$variables$job_transition ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7311 -0.6576 0.2964 0.3254 0.3577
##
## Coefficients:
## Estimate
## (Intercept) -0.020331
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.001812
## Std. Error
## (Intercept) 0.136479
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.006178
## t value
## (Intercept) -0.149
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.293
## Pr(>|t|)
## (Intercept) 0.882
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.769
##
## Residual standard error: 0.464 on 2107 degrees of freedom
## Multiple R-squared: 4.081e-05, Adjusted R-squared: -0.0004338
## F-statistic: 0.086 on 1 and 2107 DF, p-value: 0.7694
##
##
## Response general_healthb_poor/bad :
##
## Call:
## lm(formula = `general_healthb_poor/bad` ~ des2$variables$job.loss.age[des2$variables$job_transition ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.15369 -0.12821 -0.11494 -0.09932 0.91917
##
## Coefficients:
## Estimate
## (Intercept) 0.213729
## des2$variables$job.loss.age[des2$variables$job_transition == 1] -0.009629
## Std. Error
## (Intercept) 0.094725
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.004288
## t value
## (Intercept) 2.256
## des2$variables$job.loss.age[des2$variables$job_transition == 1] -2.246
## Pr(>|t|)
## (Intercept) 0.0242 *
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.0248 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.322 on 2107 degrees of freedom
## Multiple R-squared: 0.002388, Adjusted R-squared: 0.001914
## F-statistic: 5.043 on 1 and 2107 DF, p-value: 0.02483
##
##
## Response depressionW4b_yes :
##
## Call:
## lm(formula = depressionW4b_yes ~ des2$variables$job.loss.age[des2$variables$job_transition ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.2111 -0.1925 -0.1856 -0.1739 0.8414
##
## Coefficients:
## Estimate
## (Intercept) 0.128573
## des2$variables$job.loss.age[des2$variables$job_transition == 1] -0.006133
## Std. Error
## (Intercept) 0.114995
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.005206
## t value
## (Intercept) 1.118
## des2$variables$job.loss.age[des2$variables$job_transition == 1] -1.178
## Pr(>|t|)
## (Intercept) 0.264
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.239
##
## Residual standard error: 0.3909 on 2107 degrees of freedom
## Multiple R-squared: 0.0006584, Adjusted R-squared: 0.0001841
## F-statistic: 1.388 on 1 and 2107 DF, p-value: 0.2389
##
##
## Response alcohol_day_permonthW4b_1or2days/week :
##
## Call:
## lm(formula = `alcohol_day_permonthW4b_1or2days/week` ~ des2$variables$job.loss.age[des2$variables$job_transition ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.2466 -0.2329 -0.2295 -0.2243 0.7790
##
## Coefficients:
## Estimate
## (Intercept) 0.031494
## des2$variables$job.loss.age[des2$variables$job_transition == 1] -0.001655
## Std. Error
## (Intercept) 0.124150
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.005620
## t value
## (Intercept) 0.254
## des2$variables$job.loss.age[des2$variables$job_transition == 1] -0.294
## Pr(>|t|)
## (Intercept) 0.800
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.768
##
## Residual standard error: 0.4221 on 2107 degrees of freedom
## Multiple R-squared: 4.116e-05, Adjusted R-squared: -0.0004334
## F-statistic: 0.08672 on 1 and 2107 DF, p-value: 0.7684
##
##
## Response alcohol_day_permonthW4c_3to5days/week :
##
## Call:
## lm(formula = `alcohol_day_permonthW4c_3to5days/week` ~ des2$variables$job.loss.age[des2$variables$job_transition ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.1189 -0.1139 -0.1119 -0.1099 0.8936
##
## Coefficients:
## Estimate
## (Intercept) -0.0248842
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.0009922
## Std. Error
## (Intercept) 0.0929568
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.0042079
## t value
## (Intercept) -0.268
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.236
## Pr(>|t|)
## (Intercept) 0.789
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.814
##
## Residual standard error: 0.316 on 2107 degrees of freedom
## Multiple R-squared: 2.639e-05, Adjusted R-squared: -0.0004482
## F-statistic: 0.0556 on 1 and 2107 DF, p-value: 0.8136
##
##
## Response alcohol_day_permonthW4d_daily :
##
## Call:
## lm(formula = alcohol_day_permonthW4d_daily ~ des2$variables$job.loss.age[des2$variables$job_transition ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.04873 -0.04342 -0.04117 -0.03828 0.96741
##
## Coefficients:
## Estimate
## (Intercept) -0.028426
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.001054
## Std. Error
## (Intercept) 0.058230
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.002636
## t value
## (Intercept) -0.488
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.400
## Pr(>|t|)
## (Intercept) 0.625
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.689
##
## Residual standard error: 0.198 on 2107 degrees of freedom
## Multiple R-squared: 7.584e-05, Adjusted R-squared: -0.0003987
## F-statistic: 0.1598 on 1 and 2107 DF, p-value: 0.6894
##
##
## Response leave_jobb_health :
##
## Call:
## lm(formula = leave_jobb_health ~ des2$variables$job.loss.age[des2$variables$job_transition ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.04496 -0.03363 -0.02928 -0.02440 0.98007
##
## Coefficients:
## Estimate
## (Intercept) -0.072432
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.003427
## Std. Error
## (Intercept) 0.049684
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.002249
## t value
## (Intercept) -1.458
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 1.524
## Pr(>|t|)
## (Intercept) 0.145
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.128
##
## Residual standard error: 0.1689 on 2107 degrees of freedom
## Multiple R-squared: 0.001101, Adjusted R-squared: 0.0006266
## F-statistic: 2.322 on 1 and 2107 DF, p-value: 0.1277
##
##
## Response leave_jobc_other :
##
## Call:
## lm(formula = leave_jobc_other ~ des2$variables$job.loss.age[des2$variables$job_transition ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.06299 -0.05847 -0.05672 -0.05493 0.94709
##
## Coefficients:
## Estimate
## (Intercept) -0.0246842
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.0009373
## Std. Error
## (Intercept) 0.0681578
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.0030853
## t value
## (Intercept) -0.362
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.304
## Pr(>|t|)
## (Intercept) 0.717
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.761
##
## Residual standard error: 0.2317 on 2107 degrees of freedom
## Multiple R-squared: 4.38e-05, Adjusted R-squared: -0.0004308
## F-statistic: 0.09228 on 1 and 2107 DF, p-value: 0.7613
##
##
## Response leave_jobd_skip :
##
## Call:
## lm(formula = leave_jobd_skip ~ des2$variables$job.loss.age[des2$variables$job_transition ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.8888 0.1343 0.1567 0.1743 0.2172
##
## Coefficients:
## Estimate
## (Intercept) 0.182390
## des2$variables$job.loss.age[des2$variables$job_transition == 1] -0.008485
## Std. Error
## (Intercept) 0.108554
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.004914
## t value
## (Intercept) 1.680
## des2$variables$job.loss.age[des2$variables$job_transition == 1] -1.727
## Pr(>|t|)
## (Intercept) 0.0931 .
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.0844 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.369 on 2107 degrees of freedom
## Multiple R-squared: 0.001413, Adjusted R-squared: 0.0009392
## F-statistic: 2.982 on 1 and 2107 DF, p-value: 0.08436
##
##
## Response job_satisfactionb_neutral :
##
## Call:
## lm(formula = job_satisfactionb_neutral ~ des2$variables$job.loss.age[des2$variables$job_transition ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.2337 -0.2108 -0.2004 -0.1868 0.8213
##
## Coefficients:
## Estimate
## (Intercept) 0.164508
## des2$variables$job.loss.age[des2$variables$job_transition == 1] -0.006806
## Std. Error
## (Intercept) 0.118590
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.005368
## t value
## (Intercept) 1.387
## des2$variables$job.loss.age[des2$variables$job_transition == 1] -1.268
## Pr(>|t|)
## (Intercept) 0.166
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.205
##
## Residual standard error: 0.4032 on 2107 degrees of freedom
## Multiple R-squared: 0.0007622, Adjusted R-squared: 0.0002879
## F-statistic: 1.607 on 1 and 2107 DF, p-value: 0.205
##
##
## Response job_satisfactionc_dissatisfied :
##
## Call:
## lm(formula = job_satisfactionc_dissatisfied ~ des2$variables$job.loss.age[des2$variables$job_transition ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.1502 -0.1290 -0.1217 -0.1129 0.8983
##
## Coefficients:
## Estimate
## (Intercept) -0.103593
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.005005
## Std. Error
## (Intercept) 0.096733
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.004379
## t value
## (Intercept) -1.071
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 1.143
## Pr(>|t|)
## (Intercept) 0.284
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.253
##
## Residual standard error: 0.3289 on 2107 degrees of freedom
## Multiple R-squared: 0.0006198, Adjusted R-squared: 0.0001455
## F-statistic: 1.307 on 1 and 2107 DF, p-value: 0.2531
##
##
## Response beaten_upW4b_yes :
##
## Call:
## lm(formula = beaten_upW4b_yes ~ des2$variables$job.loss.age[des2$variables$job_transition ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.1378 -0.1242 -0.1138 -0.1071 0.9072
##
## Coefficients:
## Estimate
## (Intercept) 0.136825
## des2$variables$job.loss.age[des2$variables$job_transition == 1] -0.005987
## Std. Error
## (Intercept) 0.094637
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.004284
## t value
## (Intercept) 1.446
## des2$variables$job.loss.age[des2$variables$job_transition == 1] -1.398
## Pr(>|t|)
## (Intercept) 0.148
## des2$variables$job.loss.age[des2$variables$job_transition == 1] 0.162
##
## Residual standard error: 0.3217 on 2107 degrees of freedom
## Multiple R-squared: 0.0009262, Adjusted R-squared: 0.000452
## F-statistic: 1.953 on 1 and 2107 DF, p-value: 0.1624
## rho chisq p
## sexb_female -0.07999 2.97e+01 5.05e-08
## racethnicb-nhblack -0.01150 9.95e-01 3.18e-01
## racethnicc-hispanic 0.00549 1.48e-01 7.00e-01
## racethnicd-asian 0.05507 1.28e+01 3.42e-04
## racethnice-native_american 0.02766 4.38e+00 3.63e-02
## racethnicf-other -0.01340 9.56e-01 3.28e-01
## sexorientb_bisexual -0.01834 1.42e+00 2.34e-01
## sexorientc_LGB 0.01011 4.22e-01 5.16e-01
## educb_highschool_grad -0.06168 2.32e+01 1.45e-06
## educc_college_bach -0.07794 4.45e+01 2.50e-11
## educd_college+ -0.00112 6.66e-03 9.35e-01
## unable_pay_utilitiesb_yes 0.00919 3.75e-01 5.40e-01
## insurance_statusW4b_yes_insurance 0.03721 7.13e+00 7.57e-03
## general_healthb_poor/bad 0.01619 1.53e+00 2.17e-01
## depressionW4b_yes -0.00618 2.01e-01 6.54e-01
## alcohol_day_permonthW4b_1or2days/week -0.02137 2.15e+00 1.42e-01
## alcohol_day_permonthW4c_3to5days/week 0.02604 3.37e+00 6.64e-02
## alcohol_day_permonthW4d_daily -0.00814 3.21e-01 5.71e-01
## leave_jobb_health -0.04079 1.06e+01 1.15e-03
## leave_jobc_other -0.06359 1.65e+01 4.85e-05
## leave_jobd_skip -0.06195 1.77e+01 2.61e-05
## job_satisfactionb_neutral -0.07405 2.97e+01 5.03e-08
## job_satisfactionc_dissatisfied 0.03306 5.71e+00 1.68e-02
## beaten_upW4b_yes 0.03510 6.90e+00 8.63e-03
## GLOBAL NA 1.69e+02 9.33e-24
###Martingale residuals
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 4.0323e-16
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 4.0323e-16
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
###Stratification by sexual orientation
## Stratified 1 - level Cluster Sampling design (with replacement)
## With (130) clusters.
## svydesign(ids = ~psuscid, strata = ~region, weights = ~GSWGT4,
## data = addhealth, nest = T)
## Call:
## svycoxph(formula = Surv(time = job.loss.age, event = job_transition) ~
## strata(sexorient) + sex + racethnic + educ + unable_pay_utilities +
## insurance_statusW4 + general_health + depressionW4 +
## alcohol_day_permonthW4 + leave_job + job_satisfaction +
## beaten_upW4, design = des2)
##
## n= 7101, number of events= 2109
##
## coef exp(coef) se(coef) z
## sexb_female -0.335703 0.714836 0.060583 -5.541
## racethnicb-nhblack 0.253031 1.287923 0.087930 2.878
## racethnicc-hispanic -0.001235 0.998766 0.120151 -0.010
## racethnicd-asian -0.279472 0.756183 0.143855 -1.943
## racethnice-native_american 0.392777 1.481088 0.332964 1.180
## racethnicf-other 0.356074 1.427714 0.332230 1.072
## educb_highschool_grad -0.135344 0.873416 0.101981 -1.327
## educc_college_bach -0.603440 0.546927 0.147813 -4.082
## educd_college+ -1.166681 0.311399 0.157663 -7.400
## unable_pay_utilitiesb_yes 0.321484 1.379173 0.068445 4.697
## insurance_statusW4b_yes_insurance -0.426206 0.652982 0.062538 -6.815
## general_healthb_poor/bad 0.149968 1.161797 0.097086 1.545
## depressionW4b_yes 0.175581 1.191939 0.082208 2.136
## alcohol_day_permonthW4b_1or2days/week -0.004832 0.995179 0.072246 -0.067
## alcohol_day_permonthW4c_3to5days/week -0.005481 0.994534 0.094793 -0.058
## alcohol_day_permonthW4d_daily 0.235276 1.265258 0.136874 1.719
## leave_jobb_health -1.179429 0.307454 0.218010 -5.410
## leave_jobc_other -0.929322 0.394821 0.136137 -6.826
## leave_jobd_skip -0.805227 0.446986 0.103213 -7.802
## job_satisfactionb_neutral 0.112813 1.119422 0.080290 1.405
## job_satisfactionc_dissatisfied 0.200945 1.222557 0.094657 2.123
## beaten_upW4b_yes 0.018515 1.018687 0.099776 0.186
## Pr(>|z|)
## sexb_female 3.00e-08 ***
## racethnicb-nhblack 0.00401 **
## racethnicc-hispanic 0.99180
## racethnicd-asian 0.05205 .
## racethnice-native_american 0.23814
## racethnicf-other 0.28382
## educb_highschool_grad 0.18446
## educc_college_bach 4.46e-05 ***
## educd_college+ 1.36e-13 ***
## unable_pay_utilitiesb_yes 2.64e-06 ***
## insurance_statusW4b_yes_insurance 9.41e-12 ***
## general_healthb_poor/bad 0.12242
## depressionW4b_yes 0.03269 *
## alcohol_day_permonthW4b_1or2days/week 0.94667
## alcohol_day_permonthW4c_3to5days/week 0.95389
## alcohol_day_permonthW4d_daily 0.08563 .
## leave_jobb_health 6.30e-08 ***
## leave_jobc_other 8.71e-12 ***
## leave_jobd_skip 6.11e-15 ***
## job_satisfactionb_neutral 0.16000
## job_satisfactionc_dissatisfied 0.03376 *
## beaten_upW4b_yes 0.85279
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95
## sexb_female 0.7148 1.3989 0.6348
## racethnicb-nhblack 1.2879 0.7764 1.0840
## racethnicc-hispanic 0.9988 1.0012 0.7892
## racethnicd-asian 0.7562 1.3224 0.5704
## racethnice-native_american 1.4811 0.6752 0.7712
## racethnicf-other 1.4277 0.7004 0.7445
## educb_highschool_grad 0.8734 1.1449 0.7152
## educc_college_bach 0.5469 1.8284 0.4094
## educd_college+ 0.3114 3.2113 0.2286
## unable_pay_utilitiesb_yes 1.3792 0.7251 1.2060
## insurance_statusW4b_yes_insurance 0.6530 1.5314 0.5777
## general_healthb_poor/bad 1.1618 0.8607 0.9605
## depressionW4b_yes 1.1919 0.8390 1.0146
## alcohol_day_permonthW4b_1or2days/week 0.9952 1.0048 0.8638
## alcohol_day_permonthW4c_3to5days/week 0.9945 1.0055 0.8259
## alcohol_day_permonthW4d_daily 1.2653 0.7904 0.9675
## leave_jobb_health 0.3075 3.2525 0.2005
## leave_jobc_other 0.3948 2.5328 0.3024
## leave_jobd_skip 0.4470 2.2372 0.3651
## job_satisfactionb_neutral 1.1194 0.8933 0.9564
## job_satisfactionc_dissatisfied 1.2226 0.8180 1.0155
## beaten_upW4b_yes 1.0187 0.9817 0.8377
## upper .95
## sexb_female 0.8050
## racethnicb-nhblack 1.5302
## racethnicc-hispanic 1.2640
## racethnicd-asian 1.0025
## racethnice-native_american 2.8445
## racethnicf-other 2.7380
## educb_highschool_grad 1.0667
## educc_college_bach 0.7307
## educd_college+ 0.4242
## unable_pay_utilitiesb_yes 1.5772
## insurance_statusW4b_yes_insurance 0.7381
## general_healthb_poor/bad 1.4053
## depressionW4b_yes 1.4003
## alcohol_day_permonthW4b_1or2days/week 1.1466
## alcohol_day_permonthW4c_3to5days/week 1.1976
## alcohol_day_permonthW4d_daily 1.6546
## leave_jobb_health 0.4714
## leave_jobc_other 0.5156
## leave_jobd_skip 0.5472
## job_satisfactionb_neutral 1.3102
## job_satisfactionc_dissatisfied 1.4718
## beaten_upW4b_yes 1.2387
##
## Concordance= 0.672 (se = 0.008 )
## Likelihood ratio test= NA on 22 df, p=NA
## Wald test = 550.3 on 22 df, p=<2e-16
## Score (logrank) test = NA on 22 df, p=NA