This command is used to view the Original DataSet

View(default_of_credit_card_clients)

The orginal dataset is being duplicated into another document before further analysis.

credit_clients2=default_of_credit_card_clients

The Structure of the duplicated Dataset is Viewed using this function

str(credit_clients2)
Classes ‘tbl_df’, ‘tbl’ and 'data.frame':   30000 obs. of  25 variables:
 $ ID       : num  1 2 3 4 5 6 7 8 9 10 ...
 $ LIMIT_BAL: num  20000 120000 90000 50000 50000 50000 500000 100000 140000 20000 ...
 $ SEX      : num  2 2 2 2 1 1 1 2 2 1 ...
 $ EDUCATION: num  2 2 2 2 2 1 1 2 3 3 ...
 $ MARRIAGE : num  1 2 2 1 1 2 2 2 1 2 ...
 $ AGE      : num  24 26 34 37 57 37 29 23 28 35 ...
 $ PAY_0    : num  2 -1 0 0 -1 0 0 0 0 -2 ...
 $ PAY_2    : num  2 2 0 0 0 0 0 -1 0 -2 ...
 $ PAY_3    : num  -1 0 0 0 -1 0 0 -1 2 -2 ...
 $ PAY_4    : num  -1 0 0 0 0 0 0 0 0 -2 ...
 $ PAY_5    : num  -2 0 0 0 0 0 0 0 0 -1 ...
 $ PAY_6    : num  -2 2 0 0 0 0 0 -1 0 -1 ...
 $ BILL_AMT1: num  3913 2682 29239 46990 8617 ...
 $ BILL_AMT2: num  3102 1725 14027 48233 5670 ...
 $ BILL_AMT3: num  689 2682 13559 49291 35835 ...
 $ BILL_AMT4: num  0 3272 14331 28314 20940 ...
 $ BILL_AMT5: num  0 3455 14948 28959 19146 ...
 $ BILL_AMT6: num  0 3261 15549 29547 19131 ...
 $ PAY_AMT1 : num  0 0 1518 2000 2000 ...
 $ PAY_AMT2 : num  689 1000 1500 2019 36681 ...
 $ PAY_AMT3 : num  0 1000 1000 1200 10000 657 38000 0 432 0 ...
 $ PAY_AMT4 : num  0 1000 1000 1100 9000 ...
 $ PAY_AMT5 : num  0 0 1000 1069 689 ...
 $ PAY_AMT6 : num  0 2000 5000 1000 679 ...
 $ dpnm     : num  1 1 0 0 0 0 0 0 0 0 ...

The Summary of the Dataset is derived using this function

summary(credit_clients2)
       ID          LIMIT_BAL            SEX          EDUCATION        MARRIAGE    
 Min.   :    1   Min.   :  10000   Min.   :1.000   Min.   :0.000   Min.   :0.000  
 1st Qu.: 7501   1st Qu.:  50000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000  
 Median :15000   Median : 140000   Median :2.000   Median :2.000   Median :2.000  
 Mean   :15000   Mean   : 167484   Mean   :1.604   Mean   :1.853   Mean   :1.552  
 3rd Qu.:22500   3rd Qu.: 240000   3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:2.000  
 Max.   :30000   Max.   :1000000   Max.   :2.000   Max.   :6.000   Max.   :3.000  
      AGE            PAY_0             PAY_2             PAY_3             PAY_4        
 Min.   :21.00   Min.   :-2.0000   Min.   :-2.0000   Min.   :-2.0000   Min.   :-2.0000  
 1st Qu.:28.00   1st Qu.:-1.0000   1st Qu.:-1.0000   1st Qu.:-1.0000   1st Qu.:-1.0000  
 Median :34.00   Median : 0.0000   Median : 0.0000   Median : 0.0000   Median : 0.0000  
 Mean   :35.49   Mean   :-0.0167   Mean   :-0.1338   Mean   :-0.1662   Mean   :-0.2207  
 3rd Qu.:41.00   3rd Qu.: 0.0000   3rd Qu.: 0.0000   3rd Qu.: 0.0000   3rd Qu.: 0.0000  
 Max.   :79.00   Max.   : 8.0000   Max.   : 8.0000   Max.   : 8.0000   Max.   : 8.0000  
     PAY_5             PAY_6           BILL_AMT1         BILL_AMT2        BILL_AMT3      
 Min.   :-2.0000   Min.   :-2.0000   Min.   :-165580   Min.   :-69777   Min.   :-157264  
 1st Qu.:-1.0000   1st Qu.:-1.0000   1st Qu.:   3559   1st Qu.:  2985   1st Qu.:   2666  
 Median : 0.0000   Median : 0.0000   Median :  22382   Median : 21200   Median :  20088  
 Mean   :-0.2662   Mean   :-0.2911   Mean   :  51223   Mean   : 49179   Mean   :  47013  
 3rd Qu.: 0.0000   3rd Qu.: 0.0000   3rd Qu.:  67091   3rd Qu.: 64006   3rd Qu.:  60165  
 Max.   : 8.0000   Max.   : 8.0000   Max.   : 964511   Max.   :983931   Max.   :1664089  
   BILL_AMT4         BILL_AMT5        BILL_AMT6          PAY_AMT1         PAY_AMT2      
 Min.   :-170000   Min.   :-81334   Min.   :-339603   Min.   :     0   Min.   :      0  
 1st Qu.:   2327   1st Qu.:  1763   1st Qu.:   1256   1st Qu.:  1000   1st Qu.:    833  
 Median :  19052   Median : 18104   Median :  17071   Median :  2100   Median :   2009  
 Mean   :  43263   Mean   : 40311   Mean   :  38872   Mean   :  5664   Mean   :   5921  
 3rd Qu.:  54506   3rd Qu.: 50190   3rd Qu.:  49198   3rd Qu.:  5006   3rd Qu.:   5000  
 Max.   : 891586   Max.   :927171   Max.   : 961664   Max.   :873552   Max.   :1684259  
    PAY_AMT3         PAY_AMT4         PAY_AMT5           PAY_AMT6             dpnm       
 Min.   :     0   Min.   :     0   Min.   :     0.0   Min.   :     0.0   Min.   :0.0000  
 1st Qu.:   390   1st Qu.:   296   1st Qu.:   252.5   1st Qu.:   117.8   1st Qu.:0.0000  
 Median :  1800   Median :  1500   Median :  1500.0   Median :  1500.0   Median :0.0000  
 Mean   :  5226   Mean   :  4826   Mean   :  4799.4   Mean   :  5215.5   Mean   :0.2212  
 3rd Qu.:  4505   3rd Qu.:  4013   3rd Qu.:  4031.5   3rd Qu.:  4000.0   3rd Qu.:0.0000  
 Max.   :896040   Max.   :621000   Max.   :426529.0   Max.   :528666.0   Max.   :1.0000  

Using caTools Library, we factorize the dependent variable(dpnm) and education,SampleSplit(sample_cc)with a Ratio(0.8),Train(train_cc)and Test(test_cc) the Dataset.

library(caTools)
credit_clients2$dpnm=factor(credit_clients2$dpnm,levels = c(0,1))
credit_clients2$EDUCATION=factor(credit_clients2$EDUCATION,levels = c(1,2,3,4,5,6))
sample_cc=sample.split(credit_clients2,SplitRatio = 0.8)
sample_cc
 [1]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
[15]  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE
train_cc=subset(credit_clients2,sample_cc=="TRUE")
Length of logical index must be 1 or 30000, not 25
train_cc
test_cc=subset(credit_clients2,sample_cc=="FALSE")
Length of logical index must be 1 or 30000, not 25
test_cc

Post the Train and Test Process of the dataset,we use (rpart) and (rpart.plot) library to derive the decision tree for the test data that is assigned. We use rpart.control function to control the Decision Tree limits. We use Printcp,Plotcp function to rectify if there were any overfit in the derived decision tree.

library(rpart)
library(rpart.plot)
my_cc_model1=rpart.control(minsplit = 6,minbucket = round(5/3),maxdepth = 6,cp = 0)
my_cc_model=rpart(dpnm~.,data = test_cc,method = "class",
                  control =my_cc_model1)
my_cc_model
n= 6000 

node), split, n, loss, yval, (yprob)
      * denotes terminal node

  1) root 6000 1337 0 (0.77716667 0.22283333)  
    2) PAY_0< 1.5 5356  884 0 (0.83495146 0.16504854)  
      4) PAY_2< 1.5 4942  715 0 (0.85532173 0.14467827)  
        8) PAY_AMT2>=1500.5 3112  328 0 (0.89460154 0.10539846)  
         16) PAY_5< 1 2988  295 0 (0.90127175 0.09872825)  
           32) BILL_AMT3< 477175.5 2983  291 0 (0.90244720 0.09755280) *
           33) BILL_AMT3>=477175.5 5    1 1 (0.20000000 0.80000000) *
         17) PAY_5>=1 124   33 0 (0.73387097 0.26612903)  
           34) PAY_AMT3>=3.5 101   21 0 (0.79207921 0.20792079) *
           35) PAY_AMT3< 3.5 23   11 1 (0.47826087 0.52173913)  
             70) BILL_AMT1>=4100.5 17    6 0 (0.64705882 0.35294118) *
             71) BILL_AMT1< 4100.5 6    0 1 (0.00000000 1.00000000) *
        9) PAY_AMT2< 1500.5 1830  387 0 (0.78852459 0.21147541)  
         18) PAY_AMT4>=0.5 1091  189 0 (0.82676444 0.17323556)  
           36) BILL_AMT3< 342.5 282   27 0 (0.90425532 0.09574468)  
             72) BILL_AMT1< 337307.5 280   25 0 (0.91071429 0.08928571) *
             73) BILL_AMT1>=337307.5 2    0 1 (0.00000000 1.00000000) *
           37) BILL_AMT3>=342.5 809  162 0 (0.79975278 0.20024722) *
         19) PAY_AMT4< 0.5 739  198 0 (0.73207037 0.26792963)  
           38) BILL_AMT1>=2252 294   54 0 (0.81632653 0.18367347)  
             76) BILL_AMT5< 40756.5 290   51 0 (0.82413793 0.17586207) *
             77) BILL_AMT5>=40756.5 4    1 1 (0.25000000 0.75000000) *
           39) BILL_AMT1< 2252 445  144 0 (0.67640449 0.32359551) *
      5) PAY_2>=1.5 414  169 0 (0.59178744 0.40821256)  
       10) PAY_5< 1 298  105 0 (0.64765101 0.35234899)  
         20) PAY_AMT6>=1581.5 91   19 0 (0.79120879 0.20879121)  
           40) ID>=327 89   17 0 (0.80898876 0.19101124)  
             80) ID< 27914.5 82   13 0 (0.84146341 0.15853659) *
             81) ID>=27914.5 7    3 1 (0.42857143 0.57142857) *
           41) ID< 327 2    0 1 (0.00000000 1.00000000) *
         21) PAY_AMT6< 1581.5 207   86 0 (0.58454106 0.41545894)  
           42) PAY_6< -0.5 57   15 0 (0.73684211 0.26315789) *
           43) PAY_6>=-0.5 150   71 0 (0.52666667 0.47333333)  
             86) BILL_AMT1>=18865 80   29 0 (0.63750000 0.36250000) *
             87) BILL_AMT1< 18865 70   28 1 (0.40000000 0.60000000) *
       11) PAY_5>=1 116   52 1 (0.44827586 0.55172414)  
         22) PAY_5< 2.5 108   52 1 (0.48148148 0.51851852)  
           44) PAY_AMT5< 2064.5 81   36 0 (0.55555556 0.44444444)  
             88) AGE< 54.5 76   31 0 (0.59210526 0.40789474) *
             89) AGE>=54.5 5    0 1 (0.00000000 1.00000000) *
           45) PAY_AMT5>=2064.5 27    7 1 (0.25925926 0.74074074)  
             90) PAY_AMT3>=5700 9    3 0 (0.66666667 0.33333333) *
             91) PAY_AMT3< 5700 18    1 1 (0.05555556 0.94444444) *
         23) PAY_5>=2.5 8    0 1 (0.00000000 1.00000000) *
    3) PAY_0>=1.5 644  191 1 (0.29658385 0.70341615)  
      6) PAY_3< -0.5 40   18 0 (0.55000000 0.45000000)  
       12) PAY_AMT3>=1346.5 11    1 0 (0.90909091 0.09090909) *
       13) PAY_AMT3< 1346.5 29   12 1 (0.41379310 0.58620690)  
         26) BILL_AMT1< 1083 12    4 0 (0.66666667 0.33333333)  
           52) PAY_AMT5< 519 6    0 0 (1.00000000 0.00000000) *
           53) PAY_AMT5>=519 6    2 1 (0.33333333 0.66666667)  
            106) BILL_AMT6>=911 2    0 0 (1.00000000 0.00000000) *
            107) BILL_AMT6< 911 4    0 1 (0.00000000 1.00000000) *
         27) BILL_AMT1>=1083 17    4 1 (0.23529412 0.76470588)  
           54) BILL_AMT1>=75450 3    1 0 (0.66666667 0.33333333) *
           55) BILL_AMT1< 75450 14    2 1 (0.14285714 0.85714286) *
      7) PAY_3>=-0.5 604  169 1 (0.27980132 0.72019868)  
       14) BILL_AMT1>=18236 460  143 1 (0.31086957 0.68913043)  
         28) BILL_AMT5< 30470.5 168   70 1 (0.41666667 0.58333333)  
           56) PAY_AMT1>=6028 5    0 0 (1.00000000 0.00000000) *
           57) PAY_AMT1< 6028 163   65 1 (0.39877301 0.60122699)  
            114) AGE>=60.5 4    0 0 (1.00000000 0.00000000) *
            115) AGE< 60.5 159   61 1 (0.38364780 0.61635220) *
         29) BILL_AMT5>=30470.5 292   73 1 (0.25000000 0.75000000)  
           58) PAY_AMT2>=15030.5 7    2 0 (0.71428571 0.28571429) *
           59) PAY_AMT2< 15030.5 285   68 1 (0.23859649 0.76140351) *
       15) BILL_AMT1< 18236 144   26 1 (0.18055556 0.81944444)  
         30) AGE< 41.5 100   24 1 (0.24000000 0.76000000)  
           60) PAY_AMT4>=2500 9    4 0 (0.55555556 0.44444444)  
            120) BILL_AMT5< 18383.5 6    1 0 (0.83333333 0.16666667) *
            121) BILL_AMT5>=18383.5 3    0 1 (0.00000000 1.00000000) *
           61) PAY_AMT4< 2500 91   19 1 (0.20879121 0.79120879) *
         31) AGE>=41.5 44    2 1 (0.04545455 0.95454545)  
           62) PAY_3< 1 10    2 1 (0.20000000 0.80000000)  
            124) BILL_AMT4< 8682.5 2    0 0 (1.00000000 0.00000000) *
            125) BILL_AMT4>=8682.5 8    0 1 (0.00000000 1.00000000) *
           63) PAY_3>=1 34    0 1 (0.00000000 1.00000000) *
rpart.plot(my_cc_model)

printcp(my_cc_model)

Classification tree:
rpart(formula = dpnm ~ ., data = test_cc, method = "class", control = my_cc_model1)

Variables actually used in tree construction:
 [1] AGE       BILL_AMT1 BILL_AMT3 BILL_AMT4 BILL_AMT5 BILL_AMT6 ID        PAY_0    
 [9] PAY_2     PAY_3     PAY_5     PAY_6     PAY_AMT1  PAY_AMT2  PAY_AMT3  PAY_AMT4 
[17] PAY_AMT5  PAY_AMT6 

Root node error: 1337/6000 = 0.22283

n= 6000 

           CP nsplit rel error  xerror     xstd
1  0.19596111      0   1.00000 1.00000 0.024110
2  0.00448766      1   0.80404 0.80404 0.022218
3  0.00349040      3   0.79506 0.81825 0.022370
4  0.00336574      6   0.78459 0.81750 0.022362
5  0.00299177     11   0.76739 0.81301 0.022314
6  0.00224383     12   0.76440 0.81376 0.022322
7  0.00149589     13   0.76215 0.83022 0.022496
8  0.00134630     21   0.74869 0.83096 0.022504
9  0.00099726     26   0.74196 0.83096 0.022504
10 0.00074794     29   0.73897 0.83396 0.022535
11 0.00059835     33   0.73598 0.83844 0.022582
12 0.00000000     38   0.73298 0.83994 0.022597
plotcp(my_cc_model)

After deriving the Decision Tree,We Predict The Values of Test data. Then,we use table function to derive the Actual Value of the Dependent Variable(dpnm) from the dataset and the Predicted value of the using the test dataset.

pred=predict(my_cc_model,test_cc,type = "class")
pred
   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16   17   18 
   0    0    0    0    0    0    0    0    0    0    0    1    1    0    0    0    0    0 
  19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36 
   0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0 
  37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54 
   1    0    0    0    0    0    0    1    1    0    0    0    0    0    0    0    1    0 
  55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72 
   0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0 
  73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90 
   1    0    0    0    0    0    0    1    0    0    0    1    0    0    0    0    0    0 
  91   92   93   94   95   96   97   98   99  100  101  102  103  104  105  106  107  108 
   0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0 
 109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126 
   0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
 127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144 
   0    0    0    1    0    0    1    0    0    0    0    0    0    0    0    0    0    0 
 145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162 
   0    0    0    0    0    1    1    0    0    0    0    1    0    0    0    0    0    1 
 163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179  180 
   0    0    0    0    0    0    0    1    1    0    0    0    0    0    0    0    0    0 
 181  182  183  184  185  186  187  188  189  190  191  192  193  194  195  196  197  198 
   0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0 
 199  200  201  202  203  204  205  206  207  208  209  210  211  212  213  214  215  216 
   0    1    0    0    0    0    0    0    1    1    0    0    0    0    0    0    0    1 
 217  218  219  220  221  222  223  224  225  226  227  228  229  230  231  232  233  234 
   0    0    0    0    0    0    0    1    0    0    0    1    1    1    0    0    0    0 
 235  236  237  238  239  240  241  242  243  244  245  246  247  248  249  250  251  252 
   0    1    0    0    0    0    0    0    0    0    0    0    1    0    0    1    0    0 
 253  254  255  256  257  258  259  260  261  262  263  264  265  266  267  268  269  270 
   0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1 
 271  272  273  274  275  276  277  278  279  280  281  282  283  284  285  286  287  288 
   1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0 
 289  290  291  292  293  294  295  296  297  298  299  300  301  302  303  304  305  306 
   1    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0 
 307  308  309  310  311  312  313  314  315  316  317  318  319  320  321  322  323  324 
   0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
 325  326  327  328  329  330  331  332  333  334  335  336  337  338  339  340  341  342 
   0    0    0    1    0    0    0    1    0    0    0    0    0    0    0    0    0    0 
 343  344  345  346  347  348  349  350  351  352  353  354  355  356  357  358  359  360 
   1    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0 
 361  362  363  364  365  366  367  368  369  370  371  372  373  374  375  376  377  378 
   0    0    0    0    0    0    0    0    1    0    0    0    1    0    0    0    0    1 
 379  380  381  382  383  384  385  386  387  388  389  390  391  392  393  394  395  396 
   0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
 397  398  399  400  401  402  403  404  405  406  407  408  409  410  411  412  413  414 
   0    0    0    0    0    0    1    0    0    0    0    0    1    0    0    0    0    0 
 415  416  417  418  419  420  421  422  423  424  425  426  427  428  429  430  431  432 
   0    0    0    1    0    1    0    0    0    0    1    0    0    1    0    0    0    0 
 433  434  435  436  437  438  439  440  441  442  443  444  445  446  447  448  449  450 
   0    0    0    0    0    0    0    0    0    0    1    0    0    0    1    0    0    1 
 451  452  453  454  455  456  457  458  459  460  461  462  463  464  465  466  467  468 
   0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    1    0    0 
 469  470  471  472  473  474  475  476  477  478  479  480  481  482  483  484  485  486 
   0    0    0    0    0    0    1    0    0    0    0    0    1    0    0    1    0    1 
 487  488  489  490  491  492  493  494  495  496  497  498  499  500  501  502  503  504 
   0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0 
 505  506  507  508  509  510  511  512  513  514  515  516  517  518  519  520  521  522 
   0    0    1    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0 
 523  524  525  526  527  528  529  530  531  532  533  534  535  536  537  538  539  540 
   0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
 541  542  543  544  545  546  547  548  549  550  551  552  553  554  555  556  557  558 
   0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0 
 559  560  561  562  563  564  565  566  567  568  569  570  571  572  573  574  575  576 
   0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0    0 
 577  578  579  580  581  582  583  584  585  586  587  588  589  590  591  592  593  594 
   0    0    0    0    1    1    0    0    0    0    0    0    0    0    0    0    0    0 
 595  596  597  598  599  600  601  602  603  604  605  606  607  608  609  610  611  612 
   0    0    0    0    0    0    0    0    1    1    0    0    0    0    0    0    0    0 
 613  614  615  616  617  618  619  620  621  622  623  624  625  626  627  628  629  630 
   0    0    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
 631  632  633  634  635  636  637  638  639  640  641  642  643  644  645  646  647  648 
   0    0    0    1    0    0    0    1    0    0    0    1    0    0    0    0    1    0 
 649  650  651  652  653  654  655  656  657  658  659  660  661  662  663  664  665  666 
   1    0    0    0    0    1    0    0    1    0    1    1    0    0    0    0    0    0 
 667  668  669  670  671  672  673  674  675  676  677  678  679  680  681  682  683  684 
   0    1    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0    0 
 685  686  687  688  689  690  691  692  693  694  695  696  697  698  699  700  701  702 
   0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0 
 703  704  705  706  707  708  709  710  711  712  713  714  715  716  717  718  719  720 
   0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0 
 721  722  723  724  725  726  727  728  729  730  731  732  733  734  735  736  737  738 
   0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    1 
 739  740  741  742  743  744  745  746  747  748  749  750  751  752  753  754  755  756 
   0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0 
 757  758  759  760  761  762  763  764  765  766  767  768  769  770  771  772  773  774 
   0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    1    0    0 
 775  776  777  778  779  780  781  782  783  784  785  786  787  788  789  790  791  792 
   0    0    0    0    0    0    1    1    0    0    0    0    0    0    0    0    0    0 
 793  794  795  796  797  798  799  800  801  802  803  804  805  806  807  808  809  810 
   0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0 
 811  812  813  814  815  816  817  818  819  820  821  822  823  824  825  826  827  828 
   0    0    1    0    0    0    0    0    0    0    0    0    0    0    1    0    1    0 
 829  830  831  832  833  834  835  836  837  838  839  840  841  842  843  844  845  846 
   1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
 847  848  849  850  851  852  853  854  855  856  857  858  859  860  861  862  863  864 
   0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0 
 865  866  867  868  869  870  871  872  873  874  875  876  877  878  879  880  881  882 
   0    0    0    0    0    1    0    1    0    0    1    0    0    0    0    0    0    0 
 883  884  885  886  887  888  889  890  891  892  893  894  895  896  897  898  899  900 
   0    0    0    1    0    1    0    0    0    0    0    1    1    0    0    1    0    0 
 901  902  903  904  905  906  907  908  909  910  911  912  913  914  915  916  917  918 
   1    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0 
 919  920  921  922  923  924  925  926  927  928  929  930  931  932  933  934  935  936 
   0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0 
 937  938  939  940  941  942  943  944  945  946  947  948  949  950  951  952  953  954 
   0    0    0    0    1    0    1    0    0    0    0    0    0    0    0    0    1    0 
 955  956  957  958  959  960  961  962  963  964  965  966  967  968  969  970  971  972 
   1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1 
 973  974  975  976  977  978  979  980  981  982  983  984  985  986  987  988  989  990 
   0    0    0    1    0    0    0    0    0    0    0    0    1    0    0    0    0    0 
 991  992  993  994  995  996  997  998  999 1000 
   0    0    0    0    1    0    0    0    0    0 
 [ reached getOption("max.print") -- omitted 5000 entries ]
Levels: 0 1
t1=table(actualvalue=test_cc$dpnm,predictedvalue=pred)

Finally,We conclude by checking the accuracy of the Predicted Value with the Actual Value. Here,the Accuracy of the Predicted value =0.8388 (i.e) 83.88%

accu_test=sum(diag(t1))/sum(t1)
accu_test
[1] 0.8366667
LS0tCnRpdGxlOiAiQ3JlZGl0IENhcmQgQ2xpZW50cyBBbmFseXNpcyhEZWNpc2lvbiBUcmVlKSIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKVGhpcyBjb21tYW5kIGlzIHVzZWQgdG8gdmlldyB0aGUgT3JpZ2luYWwgRGF0YVNldApgYGB7cn0KVmlldyhkZWZhdWx0X29mX2NyZWRpdF9jYXJkX2NsaWVudHMpCmBgYAoKVGhlIG9yZ2luYWwgZGF0YXNldCBpcyBiZWluZyBkdXBsaWNhdGVkIGludG8gYW5vdGhlciBkb2N1bWVudCBiZWZvcmUgZnVydGhlciBhbmFseXNpcy4KYGBge3J9CmNyZWRpdF9jbGllbnRzMj1kZWZhdWx0X29mX2NyZWRpdF9jYXJkX2NsaWVudHMKYGBgCgpUaGUgU3RydWN0dXJlIG9mIHRoZSBkdXBsaWNhdGVkIERhdGFzZXQgaXMgVmlld2VkIHVzaW5nIHRoaXMgZnVuY3Rpb24KYGBge3J9CnN0cihjcmVkaXRfY2xpZW50czIpCmBgYAoKVGhlIFN1bW1hcnkgb2YgdGhlIERhdGFzZXQgaXMgZGVyaXZlZCB1c2luZyB0aGlzIGZ1bmN0aW9uCmBgYHtyfQpzdW1tYXJ5KGNyZWRpdF9jbGllbnRzMikKYGBgCgpVc2luZyBjYVRvb2xzIExpYnJhcnksIHdlIGZhY3Rvcml6ZSB0aGUgZGVwZW5kZW50IHZhcmlhYmxlKGRwbm0pIGFuZCBlZHVjYXRpb24sU2FtcGxlU3BsaXQoc2FtcGxlX2NjKXdpdGggYSBSYXRpbygwLjgpLFRyYWluKHRyYWluX2NjKWFuZCBUZXN0KHRlc3RfY2MpIHRoZSBEYXRhc2V0LgpgYGB7cn0KbGlicmFyeShjYVRvb2xzKQpjcmVkaXRfY2xpZW50czIkZHBubT1mYWN0b3IoY3JlZGl0X2NsaWVudHMyJGRwbm0sbGV2ZWxzID0gYygwLDEpKQpjcmVkaXRfY2xpZW50czIkRURVQ0FUSU9OPWZhY3RvcihjcmVkaXRfY2xpZW50czIkRURVQ0FUSU9OLGxldmVscyA9IGMoMSwyLDMsNCw1LDYpKQpzYW1wbGVfY2M9c2FtcGxlLnNwbGl0KGNyZWRpdF9jbGllbnRzMixTcGxpdFJhdGlvID0gMC44KQpzYW1wbGVfY2MKdHJhaW5fY2M9c3Vic2V0KGNyZWRpdF9jbGllbnRzMixzYW1wbGVfY2M9PSJUUlVFIikKdHJhaW5fY2MKdGVzdF9jYz1zdWJzZXQoY3JlZGl0X2NsaWVudHMyLHNhbXBsZV9jYz09IkZBTFNFIikKdGVzdF9jYwpgYGAKClBvc3QgdGhlIFRyYWluIGFuZCBUZXN0IFByb2Nlc3Mgb2YgdGhlIGRhdGFzZXQsd2UgdXNlIChycGFydCkgYW5kIChycGFydC5wbG90KSBsaWJyYXJ5IHRvIGRlcml2ZSB0aGUgZGVjaXNpb24gdHJlZSBmb3IgdGhlIHRlc3QgZGF0YSB0aGF0IGlzIGFzc2lnbmVkLgpXZSB1c2UgcnBhcnQuY29udHJvbCBmdW5jdGlvbiB0byBjb250cm9sIHRoZSBEZWNpc2lvbiBUcmVlIGxpbWl0cy4KV2UgdXNlIFByaW50Y3AsUGxvdGNwIGZ1bmN0aW9uIHRvIHJlY3RpZnkgaWYgdGhlcmUgd2VyZSBhbnkgb3ZlcmZpdCBpbiB0aGUgZGVyaXZlZCBkZWNpc2lvbiB0cmVlLgpgYGB7cn0KbGlicmFyeShycGFydCkKbGlicmFyeShycGFydC5wbG90KQpteV9jY19tb2RlbDE9cnBhcnQuY29udHJvbChtaW5zcGxpdCA9IDYsbWluYnVja2V0ID0gcm91bmQoNS8zKSxtYXhkZXB0aCA9IDYsY3AgPSAwKQpteV9jY19tb2RlbD1ycGFydChkcG5tfi4sZGF0YSA9IHRlc3RfY2MsbWV0aG9kID0gImNsYXNzIiwKICAgICAgICAgICAgICAgICAgY29udHJvbCA9bXlfY2NfbW9kZWwxKQpteV9jY19tb2RlbApycGFydC5wbG90KG15X2NjX21vZGVsKQpwcmludGNwKG15X2NjX21vZGVsKQpwbG90Y3AobXlfY2NfbW9kZWwpCmBgYAoKQWZ0ZXIgZGVyaXZpbmcgdGhlIERlY2lzaW9uIFRyZWUsV2UgUHJlZGljdCBUaGUgVmFsdWVzIG9mIFRlc3QgZGF0YS4KVGhlbix3ZSB1c2UgdGFibGUgZnVuY3Rpb24gdG8gZGVyaXZlIHRoZSBBY3R1YWwgVmFsdWUgb2YgdGhlIERlcGVuZGVudCBWYXJpYWJsZShkcG5tKSBmcm9tIHRoZSBkYXRhc2V0IGFuZCB0aGUgUHJlZGljdGVkIHZhbHVlIG9mIHRoZSB1c2luZyB0aGUgdGVzdCBkYXRhc2V0LgpgYGB7cn0KcHJlZD1wcmVkaWN0KG15X2NjX21vZGVsLHRlc3RfY2MsdHlwZSA9ICJjbGFzcyIpCnByZWQKdDE9dGFibGUoYWN0dWFsdmFsdWU9dGVzdF9jYyRkcG5tLHByZWRpY3RlZHZhbHVlPXByZWQpCmBgYAoKRmluYWxseSxXZSBjb25jbHVkZSBieSBjaGVja2luZyB0aGUgYWNjdXJhY3kgb2YgdGhlIFByZWRpY3RlZCBWYWx1ZSB3aXRoIHRoZSBBY3R1YWwgVmFsdWUuCkhlcmUsdGhlIEFjY3VyYWN5IG9mIHRoZSBQcmVkaWN0ZWQgdmFsdWUgPTAuODM4OCAoaS5lKSA4My44OCUKYGBge3J9CmFjY3VfdGVzdD1zdW0oZGlhZyh0MSkpL3N1bSh0MSkKYWNjdV90ZXN0CgpgYGAKCgo=