R Markdown

library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.2.1 --
## v ggplot2 3.2.1     v purrr   0.3.2
## v tibble  2.1.3     v dplyr   0.8.3
## v tidyr   1.0.0     v stringr 1.4.0
## v readr   1.3.1     v forcats 0.4.0
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
setwd("C:/Users/munis/Documents/Comm in Data Science/Project 1/Data")
nbastats <- read_csv("nbasalariespoints.csv")
## Parsed with column specification:
## cols(
##   .default = col_double(),
##   Player = col_character(),
##   Pos = col_character(),
##   Tm = col_character(),
##   TEAM = col_character()
## )
## See spec(...) for full column specifications.
options(scipen = 999)
nbastats <- nbastats %>%
  filter(Salary > 6600000)
nbastats
## # A tibble: 101 x 33
##       Rk Player Pos     Age Tm        G    GS    MP    FG   FGA `FG%`  `3P`
##    <dbl> <chr>  <chr> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1     1 Steph~ PG       27 GSW      79    79  34.2  10.2  20.2 0.504   5.1
##  2     2 James~ SG       26 HOU      82    82  38.1   8.7  19.7 0.439   2.9
##  3     3 Kevin~ SF       27 OKC      72    72  35.8   9.7  19.2 0.505   2.6
##  4     4 DeMar~ C        25 SAC      65    65  34.6   9.2  20.5 0.451   1.1
##  5     5 LeBro~ SF       31 CLE      76    76  35.6   9.7  18.6 0.52    1.1
##  6     7 Antho~ PF       22 NOP      61    61  35.5   9.2  18.6 0.493   0.6
##  7     8 DeMar~ SG       26 TOR      78    78  35.9   7.9  17.7 0.446   0.6
##  8     9 Russe~ PG       27 OKC      80    80  34.4   8.2  18.1 0.454   1.3
##  9    10 Paul ~ SF       25 IND      81    81  34.8   7.5  17.9 0.418   2.6
## 10    11 Isaia~ PG       26 BOS      82    79  32.2   7.2  16.9 0.428   2  
## # ... with 91 more rows, and 21 more variables: `3PA` <dbl>, `3P%` <dbl>,
## #   `2P` <dbl>, `2PA` <dbl>, `2P%` <dbl>, `eFG%` <dbl>, FT <dbl>,
## #   FTA <dbl>, `FT%` <dbl>, ORB <dbl>, DRB <dbl>, TRB <dbl>, AST <dbl>,
## #   STL <dbl>, BLK <dbl>, TOV <dbl>, PF <dbl>, Points <dbl>, RK <dbl>,
## #   TEAM <chr>, Salary <dbl>
nbastats2 <- nbastats %>% 
  select(Rk, Player, Points, TRB, AST, Salary)
head(nbastats2)
## # A tibble: 6 x 6
##      Rk Player           Points   TRB   AST   Salary
##   <dbl> <chr>             <dbl> <dbl> <dbl>    <dbl>
## 1     1 Stephen Curry      30.1   5.4   6.7 11370786
## 2     2 James Harden       29     6.1   7.5 15756438
## 3     3 Kevin Durant       28.2   8.2   5   20158622
## 4     4 DeMarcus Cousins   26.9  11.5   3.3 15851950
## 5     5 LeBron James       25.3   7.4   6.8 22970500
## 6     7 Anthony Davis      24.3  10.3   1.9  7070730
plot4 <- nbastats2 %>%
  filter(Rk =="1" | Rk =="2" | Rk =="3" | Rk =="4" | Rk =="5") %>%
  ggplot() +
  geom_bar(aes(x=Player, y=Salary),
      position = "dodge", stat = "identity") +
  labs(title = "5 Players with Highest Points Per Game",
    subtitle = "2015-2016")
plot4

plot(x=nbastats2$Salary, y=nbastats2$Rk, xlab="Yearly Salary", ylab="Points", main="NBA Salary v Points Scored", ylim = c(200,0), xlim = c(6000000, 25000000))
abline(lm(nbastats2$Rk ~ 1 + nbastats2$Salary, data=nbastats2), col="red")

rebounddata <- nbastats2 %>%
  arrange(desc(TRB))
rebounddata
## # A tibble: 101 x 6
##       Rk Player           Points   TRB   AST   Salary
##    <dbl> <chr>             <dbl> <dbl> <dbl>    <dbl>
##  1    83 Dwight Howard      13.7  11.8   1.4 22359364
##  2     4 DeMarcus Cousins   26.9  11.5   3.3 15851950
##  3    46 Pau Gasol          16.5  11     4.1  7448760
##  4     7 Anthony Davis      24.3  10.3   1.9  7070730
##  5    51 Kevin Love         16     9.9   2.4 19689000
##  6    85 Marcin Gortat      13.5   9.9   1.4 11217391
##  7    79 Draymond Green     14     9.5   7.4 14260870
##  8    41 Paul Millsap       17.1   9     3.3 18671659
##  9    64 Thaddeus Young     15.1   9     1.8 11235955
## 10   211 Tristan Thompson    7.8   9     0.8 14260870
## # ... with 91 more rows
rebounddata <- rebounddata %>%
  mutate(rebrank = nbastats2$Rk)
rebounddata
## # A tibble: 101 x 7
##       Rk Player           Points   TRB   AST   Salary rebrank
##    <dbl> <chr>             <dbl> <dbl> <dbl>    <dbl>   <dbl>
##  1    83 Dwight Howard      13.7  11.8   1.4 22359364       1
##  2     4 DeMarcus Cousins   26.9  11.5   3.3 15851950       2
##  3    46 Pau Gasol          16.5  11     4.1  7448760       3
##  4     7 Anthony Davis      24.3  10.3   1.9  7070730       4
##  5    51 Kevin Love         16     9.9   2.4 19689000       5
##  6    85 Marcin Gortat      13.5   9.9   1.4 11217391       7
##  7    79 Draymond Green     14     9.5   7.4 14260870       8
##  8    41 Paul Millsap       17.1   9     3.3 18671659       9
##  9    64 Thaddeus Young     15.1   9     1.8 11235955      10
## 10   211 Tristan Thompson    7.8   9     0.8 14260870      11
## # ... with 91 more rows
plot(x=rebounddata$Salary, y=rebounddata$rebrank, xlab="Yearly Salary", ylab="Rank", main="NBA Salary v Rebounds", ylim = c(200,0))
abline(lm(rebounddata$rebrank ~ 1 + rebounddata$Salary, data=rebounddata), col="blue")

assistdata <- nbastats2 %>%
  arrange(desc(AST))
assistdata
## # A tibble: 101 x 6
##       Rk Player            Points   TRB   AST   Salary
##    <dbl> <chr>              <dbl> <dbl> <dbl>    <dbl>
##  1   112 Rajon Rondo         11.9   6    11.7  9500000
##  2     9 Russell Westbrook   23.5   7.8  10.4 16744218
##  3    23 John Wall           19.9   4.9  10.2 15851950
##  4    28 Chris Paul          19.5   4.2  10   21468695
##  5   148 Ricky Rubio         10.1   4.3   8.7 12700000
##  6     2 James Harden        29     6.1   7.5 15756438
##  7    79 Draymond Green      14     9.5   7.4 14260870
##  8     5 LeBron James        25.3   7.4   6.8 22970500
##  9     1 Stephen Curry       30.1   5.4   6.7 11370786
## 10    61 Tyreke Evans        15.2   5.2   6.6 10734586
## # ... with 91 more rows
assistdata <- assistdata %>%
  mutate(astrank = nbastats2$Rk)
assistdata
## # A tibble: 101 x 7
##       Rk Player            Points   TRB   AST   Salary astrank
##    <dbl> <chr>              <dbl> <dbl> <dbl>    <dbl>   <dbl>
##  1   112 Rajon Rondo         11.9   6    11.7  9500000       1
##  2     9 Russell Westbrook   23.5   7.8  10.4 16744218       2
##  3    23 John Wall           19.9   4.9  10.2 15851950       3
##  4    28 Chris Paul          19.5   4.2  10   21468695       4
##  5   148 Ricky Rubio         10.1   4.3   8.7 12700000       5
##  6     2 James Harden        29     6.1   7.5 15756438       7
##  7    79 Draymond Green      14     9.5   7.4 14260870       8
##  8     5 LeBron James        25.3   7.4   6.8 22970500       9
##  9     1 Stephen Curry       30.1   5.4   6.7 11370786      10
## 10    61 Tyreke Evans        15.2   5.2   6.6 10734586      11
## # ... with 91 more rows
plot(x=assistdata$Salary, y=assistdata$astrank, xlab="Yearly Salary", ylab="NBA Rank", main="NBA Salary v Assists", ylim = c(200,0))
abline(lm(assistdata$astrank ~ 1 + assistdata$Salary, data=assistdata), col="green")

plot(x=assistdata$Salary, y=assistdata$astrank, xlab="Salary", ylab="NBA Rank", main="NBA Salary v Stats", ylim = c(200,0), col="green")
abline(lm(assistdata$astrank ~ 1 + assistdata$Salary, data=assistdata), col="green")
par(new = TRUE)
plot(x=rebounddata$Salary, y=rebounddata$rebrank, xlab="Salary", ylab="", ylim = c(200,0), col="blue")
abline(lm(rebounddata$rebrank ~ 1 + rebounddata$Salary, data=rebounddata), col="blue")
par(new=TRUE)
plot(x=nbastats2$Salary, y=nbastats2$Rk, xlab="Salary", ylab="", ylim = c(200,0), col="red")
abline(lm(nbastats2$Rk ~ 1 + nbastats2$Salary, data=nbastats2), col="red")
legend(x=20000000, y=150, legend=c("Points", "Rebounds", "Assists"),
col=c("red", "blue", "green"), pch=c(8,16))