library(Rcapture)
# Matriz
oso<- read.delim2("C:/Users/computador/Desktop/Analsis - Oso/Base-Oso.txt", header = T, sep = "\t")
## Convertir matriz a presencia - ausencia (1 - 0)
ps_oso<- ifelse(oso>0,1,0)
desc<- descriptive(ps_oso)
plot(desc)
A esta funcion solo debemos darle como argumento la matriz del conjunto de datos porque ya tiene los valores dfreq=FALSE y dtype = “hist” por defecto.
dtype = “hist”, porque es un historial de acurrencias (ocaciones de captura).
closedp(ps_oso, dfreq=FALSE, dtype = "hist")
##
## Number of captured units: 6
##
## Abundance estimations and model fits:
## abundance stderr deviance df AIC BIC infoFit
## M0 11.7 6.3 17.468 125 32.082 31.665 warning #1
## Mt 11.5 6.1 16.748 119 43.362 41.696 warning #1
## Mh Chao (LB) 34.8 48.7 15.348 124 31.962 31.337 warning #1
## Mh Poisson2 13.0 8.0 17.305 124 33.919 33.294 warning #1
## Mh Darroch 26.1 33.7 16.802 124 33.416 32.791 OK
## Mh Gamma3.5 69.9 156.7 16.529 124 33.143 32.518 warning #1
## Mth Chao (LB) 34.2 47.9 14.592 118 43.206 41.332 warning #1
## Mth Poisson2 12.8 7.9 16.580 118 45.193 43.319 warning #1
## Mth Darroch 25.9 33.3 16.064 118 44.677 42.803 OK
## Mth Gamma3.5 70.3 157.6 15.785 118 44.399 42.524 warning #1
## Mb -4.2 10.8 16.025 124 32.639 32.014 warning #1
## Mbh -0.4 3.5 15.521 123 34.134 33.301 warning #1
*Calculamos los intervalos de confianza para el MO.
closedpCI.t(ps_oso, m = "M0")
##
## Number of captured units: 6
##
## Poisson estimation and model fit:
## abundance stderr deviance df AIC BIC infoFit
## M0 11.7 6.3 17.468 125 32.082 31.665 warning #1
##
## Multinomial estimation, 95% profile likelihood confidence interval:
## abundance infCL supCL infoCI
## M0 9.9 6 >35.1 warnings #5 #6