R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

seaice <- fread("C:/Users/arkumar/Downloads/seaice.csv")

head(seaice)
##    year extent_north extent_south
## 1: 1979       12.328       11.700
## 2: 1980       12.337       11.230
## 3: 1981       12.127       11.435
## 4: 1982       12.447       11.640
## 5: 1983       12.332       11.389
## 6: 1984       11.910       11.454

Including Plots

You can also embed plots, for example:

plot(extent_north ~ year, pch = 20, data = seaice)

Run a General Linear model using lm()

lm1 <- lm(extent_north ~ year, data = seaice)
lm1
## 
## Call:
## lm(formula = extent_north ~ year, data = seaice)
## 
## Coefficients:
## (Intercept)         year  
##   120.50304     -0.05457

Prepare the data, re-run the lm() and extract summary statistics

  summary(lm1)
## 
## Call:
## lm(formula = extent_north ~ year, data = seaice)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.49925 -0.17713  0.04898  0.16923  0.32829 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 120.503036   6.267203   19.23   <2e-16 ***
## year         -0.054574   0.003137  -17.40   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2205 on 37 degrees of freedom
## Multiple R-squared:  0.8911, Adjusted R-squared:  0.8881 
## F-statistic: 302.7 on 1 and 37 DF,  p-value: < 2.2e-16
plot(extent_north ~ year, pch = 20, data = seaice)
abline(lm1, col = 2, lty = 2, lw = 3)

x <- I(seaice$year - 1975)
y <- seaice$extent_north
N <- length(seaice$year)

Rerun the model with new data

lm1 <- lm(y ~ x)
summary(lm1)
## 
## Call:
## lm(formula = y ~ x)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.49925 -0.17713  0.04898  0.16923  0.32829 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 12.719610   0.080318   158.4   <2e-16 ***
## x           -0.054574   0.003137   -17.4   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2205 on 37 degrees of freedom
## Multiple R-squared:  0.8911, Adjusted R-squared:  0.8881 
## F-statistic: 302.7 on 1 and 37 DF,  p-value: < 2.2e-16

Extract some of the key summary statistics from model, since we can compare the statistics with the outputs of the Stan models

lm_alpha <- summary(lm1)$coeff[1]#intersect
lm_beta <- summary(lm1)$coeff[2]#slope
lm_sigma <- sigma(lm1)#residual error

Now let’s turn that into a dataframe for inputting into a Stan model. Data passed to Stan needs to be a list of named objects. The names given here need to match the variable names used in the models.

stan_data <- list(N = N, x = x, y = y)

The Stan model

write("// Stan model for simple linear regression

data {
 int < lower = 1 > N; // Sample size
 vector[N] x; // Predictor
 vector[N] y; // Outcome
}

parameters {
 real alpha; // Intercept
 real beta; // Slope (regression coefficients)
 real < lower = 0 > sigma; // Error SD
}

model {
 y ~ normal(alpha + x * beta , sigma);
}

generated quantities {
} // The posterior predictive distribution",

"stan_model1.stan")

Check if written Stan model is a file

stanc("stan_model1.stan")
## $status
## [1] TRUE
## 
## $model_cppname
## [1] "modelde457641230_stan_model1"
## 
## $cppcode
## [1] "// Code generated by Stan version 2.19.1\n\n#include <stan/model/model_header.hpp>\n\nnamespace modelde457641230_stan_model1_namespace {\n\nusing std::istream;\nusing std::string;\nusing std::stringstream;\nusing std::vector;\nusing stan::io::dump;\nusing stan::math::lgamma;\nusing stan::model::prob_grad;\nusing namespace stan::math;\n\nstatic int current_statement_begin__;\n\nstan::io::program_reader prog_reader__() {\n    stan::io::program_reader reader;\n    reader.add_event(0, 0, \"start\", \"modelde457641230_stan_model1\");\n    reader.add_event(22, 20, \"end\", \"modelde457641230_stan_model1\");\n    return reader;\n}\n\nclass modelde457641230_stan_model1 : public prob_grad {\nprivate:\n        int N;\n        vector_d x;\n        vector_d y;\npublic:\n    modelde457641230_stan_model1(stan::io::var_context& context__,\n        std::ostream* pstream__ = 0)\n        : prob_grad(0) {\n        ctor_body(context__, 0, pstream__);\n    }\n\n    modelde457641230_stan_model1(stan::io::var_context& context__,\n        unsigned int random_seed__,\n        std::ostream* pstream__ = 0)\n        : prob_grad(0) {\n        ctor_body(context__, random_seed__, pstream__);\n    }\n\n    void ctor_body(stan::io::var_context& context__,\n                   unsigned int random_seed__,\n                   std::ostream* pstream__) {\n        typedef double local_scalar_t__;\n\n        boost::ecuyer1988 base_rng__ =\n          stan::services::util::create_rng(random_seed__, 0);\n        (void) base_rng__;  // suppress unused var warning\n\n        current_statement_begin__ = -1;\n\n        static const char* function__ = \"modelde457641230_stan_model1_namespace::modelde457641230_stan_model1\";\n        (void) function__;  // dummy to suppress unused var warning\n        size_t pos__;\n        (void) pos__;  // dummy to suppress unused var warning\n        std::vector<int> vals_i__;\n        std::vector<double> vals_r__;\n        local_scalar_t__ DUMMY_VAR__(std::numeric_limits<double>::quiet_NaN());\n        (void) DUMMY_VAR__;  // suppress unused var warning\n\n        try {\n            // initialize data block variables from context__\n            current_statement_begin__ = 4;\n            context__.validate_dims(\"data initialization\", \"N\", \"int\", context__.to_vec());\n            N = int(0);\n            vals_i__ = context__.vals_i(\"N\");\n            pos__ = 0;\n            N = vals_i__[pos__++];\n            check_greater_or_equal(function__, \"N\", N, 1);\n\n            current_statement_begin__ = 5;\n            validate_non_negative_index(\"x\", \"N\", N);\n            context__.validate_dims(\"data initialization\", \"x\", \"vector_d\", context__.to_vec(N));\n            x = Eigen::Matrix<double, Eigen::Dynamic, 1>(N);\n            vals_r__ = context__.vals_r(\"x\");\n            pos__ = 0;\n            size_t x_j_1_max__ = N;\n            for (size_t j_1__ = 0; j_1__ < x_j_1_max__; ++j_1__) {\n                x(j_1__) = vals_r__[pos__++];\n            }\n\n            current_statement_begin__ = 6;\n            validate_non_negative_index(\"y\", \"N\", N);\n            context__.validate_dims(\"data initialization\", \"y\", \"vector_d\", context__.to_vec(N));\n            y = Eigen::Matrix<double, Eigen::Dynamic, 1>(N);\n            vals_r__ = context__.vals_r(\"y\");\n            pos__ = 0;\n            size_t y_j_1_max__ = N;\n            for (size_t j_1__ = 0; j_1__ < y_j_1_max__; ++j_1__) {\n                y(j_1__) = vals_r__[pos__++];\n            }\n\n\n            // initialize transformed data variables\n            // execute transformed data statements\n\n            // validate transformed data\n\n            // validate, set parameter ranges\n            num_params_r__ = 0U;\n            param_ranges_i__.clear();\n            current_statement_begin__ = 10;\n            num_params_r__ += 1;\n            current_statement_begin__ = 11;\n            num_params_r__ += 1;\n            current_statement_begin__ = 12;\n            num_params_r__ += 1;\n        } catch (const std::exception& e) {\n            stan::lang::rethrow_located(e, current_statement_begin__, prog_reader__());\n            // Next line prevents compiler griping about no return\n            throw std::runtime_error(\"*** IF YOU SEE THIS, PLEASE REPORT A BUG ***\");\n        }\n    }\n\n    ~modelde457641230_stan_model1() { }\n\n\n    void transform_inits(const stan::io::var_context& context__,\n                         std::vector<int>& params_i__,\n                         std::vector<double>& params_r__,\n                         std::ostream* pstream__) const {\n        typedef double local_scalar_t__;\n        stan::io::writer<double> writer__(params_r__, params_i__);\n        size_t pos__;\n        (void) pos__; // dummy call to supress warning\n        std::vector<double> vals_r__;\n        std::vector<int> vals_i__;\n\n        current_statement_begin__ = 10;\n        if (!(context__.contains_r(\"alpha\")))\n            stan::lang::rethrow_located(std::runtime_error(std::string(\"Variable alpha missing\")), current_statement_begin__, prog_reader__());\n        vals_r__ = context__.vals_r(\"alpha\");\n        pos__ = 0U;\n        context__.validate_dims(\"parameter initialization\", \"alpha\", \"double\", context__.to_vec());\n        double alpha(0);\n        alpha = vals_r__[pos__++];\n        try {\n            writer__.scalar_unconstrain(alpha);\n        } catch (const std::exception& e) {\n            stan::lang::rethrow_located(std::runtime_error(std::string(\"Error transforming variable alpha: \") + e.what()), current_statement_begin__, prog_reader__());\n        }\n\n        current_statement_begin__ = 11;\n        if (!(context__.contains_r(\"beta\")))\n            stan::lang::rethrow_located(std::runtime_error(std::string(\"Variable beta missing\")), current_statement_begin__, prog_reader__());\n        vals_r__ = context__.vals_r(\"beta\");\n        pos__ = 0U;\n        context__.validate_dims(\"parameter initialization\", \"beta\", \"double\", context__.to_vec());\n        double beta(0);\n        beta = vals_r__[pos__++];\n        try {\n            writer__.scalar_unconstrain(beta);\n        } catch (const std::exception& e) {\n            stan::lang::rethrow_located(std::runtime_error(std::string(\"Error transforming variable beta: \") + e.what()), current_statement_begin__, prog_reader__());\n        }\n\n        current_statement_begin__ = 12;\n        if (!(context__.contains_r(\"sigma\")))\n            stan::lang::rethrow_located(std::runtime_error(std::string(\"Variable sigma missing\")), current_statement_begin__, prog_reader__());\n        vals_r__ = context__.vals_r(\"sigma\");\n        pos__ = 0U;\n        context__.validate_dims(\"parameter initialization\", \"sigma\", \"double\", context__.to_vec());\n        double sigma(0);\n        sigma = vals_r__[pos__++];\n        try {\n            writer__.scalar_lb_unconstrain(0, sigma);\n        } catch (const std::exception& e) {\n            stan::lang::rethrow_located(std::runtime_error(std::string(\"Error transforming variable sigma: \") + e.what()), current_statement_begin__, prog_reader__());\n        }\n\n        params_r__ = writer__.data_r();\n        params_i__ = writer__.data_i();\n    }\n\n    void transform_inits(const stan::io::var_context& context,\n                         Eigen::Matrix<double, Eigen::Dynamic, 1>& params_r,\n                         std::ostream* pstream__) const {\n      std::vector<double> params_r_vec;\n      std::vector<int> params_i_vec;\n      transform_inits(context, params_i_vec, params_r_vec, pstream__);\n      params_r.resize(params_r_vec.size());\n      for (int i = 0; i < params_r.size(); ++i)\n        params_r(i) = params_r_vec[i];\n    }\n\n\n    template <bool propto__, bool jacobian__, typename T__>\n    T__ log_prob(std::vector<T__>& params_r__,\n                 std::vector<int>& params_i__,\n                 std::ostream* pstream__ = 0) const {\n\n        typedef T__ local_scalar_t__;\n\n        local_scalar_t__ DUMMY_VAR__(std::numeric_limits<double>::quiet_NaN());\n        (void) DUMMY_VAR__;  // dummy to suppress unused var warning\n\n        T__ lp__(0.0);\n        stan::math::accumulator<T__> lp_accum__;\n        try {\n            stan::io::reader<local_scalar_t__> in__(params_r__, params_i__);\n\n            // model parameters\n            current_statement_begin__ = 10;\n            local_scalar_t__ alpha;\n            (void) alpha;  // dummy to suppress unused var warning\n            if (jacobian__)\n                alpha = in__.scalar_constrain(lp__);\n            else\n                alpha = in__.scalar_constrain();\n\n            current_statement_begin__ = 11;\n            local_scalar_t__ beta;\n            (void) beta;  // dummy to suppress unused var warning\n            if (jacobian__)\n                beta = in__.scalar_constrain(lp__);\n            else\n                beta = in__.scalar_constrain();\n\n            current_statement_begin__ = 12;\n            local_scalar_t__ sigma;\n            (void) sigma;  // dummy to suppress unused var warning\n            if (jacobian__)\n                sigma = in__.scalar_lb_constrain(0, lp__);\n            else\n                sigma = in__.scalar_lb_constrain(0);\n\n            // model body\n\n            current_statement_begin__ = 16;\n            lp_accum__.add(normal_log<propto__>(y, add(alpha, multiply(x, beta)), sigma));\n\n        } catch (const std::exception& e) {\n            stan::lang::rethrow_located(e, current_statement_begin__, prog_reader__());\n            // Next line prevents compiler griping about no return\n            throw std::runtime_error(\"*** IF YOU SEE THIS, PLEASE REPORT A BUG ***\");\n        }\n\n        lp_accum__.add(lp__);\n        return lp_accum__.sum();\n\n    } // log_prob()\n\n    template <bool propto, bool jacobian, typename T_>\n    T_ log_prob(Eigen::Matrix<T_,Eigen::Dynamic,1>& params_r,\n               std::ostream* pstream = 0) const {\n      std::vector<T_> vec_params_r;\n      vec_params_r.reserve(params_r.size());\n      for (int i = 0; i < params_r.size(); ++i)\n        vec_params_r.push_back(params_r(i));\n      std::vector<int> vec_params_i;\n      return log_prob<propto,jacobian,T_>(vec_params_r, vec_params_i, pstream);\n    }\n\n\n    void get_param_names(std::vector<std::string>& names__) const {\n        names__.resize(0);\n        names__.push_back(\"alpha\");\n        names__.push_back(\"beta\");\n        names__.push_back(\"sigma\");\n    }\n\n\n    void get_dims(std::vector<std::vector<size_t> >& dimss__) const {\n        dimss__.resize(0);\n        std::vector<size_t> dims__;\n        dims__.resize(0);\n        dimss__.push_back(dims__);\n        dims__.resize(0);\n        dimss__.push_back(dims__);\n        dims__.resize(0);\n        dimss__.push_back(dims__);\n    }\n\n    template <typename RNG>\n    void write_array(RNG& base_rng__,\n                     std::vector<double>& params_r__,\n                     std::vector<int>& params_i__,\n                     std::vector<double>& vars__,\n                     bool include_tparams__ = true,\n                     bool include_gqs__ = true,\n                     std::ostream* pstream__ = 0) const {\n        typedef double local_scalar_t__;\n\n        vars__.resize(0);\n        stan::io::reader<local_scalar_t__> in__(params_r__, params_i__);\n        static const char* function__ = \"modelde457641230_stan_model1_namespace::write_array\";\n        (void) function__;  // dummy to suppress unused var warning\n\n        // read-transform, write parameters\n        double alpha = in__.scalar_constrain();\n        vars__.push_back(alpha);\n\n        double beta = in__.scalar_constrain();\n        vars__.push_back(beta);\n\n        double sigma = in__.scalar_lb_constrain(0);\n        vars__.push_back(sigma);\n\n        double lp__ = 0.0;\n        (void) lp__;  // dummy to suppress unused var warning\n        stan::math::accumulator<double> lp_accum__;\n\n        local_scalar_t__ DUMMY_VAR__(std::numeric_limits<double>::quiet_NaN());\n        (void) DUMMY_VAR__;  // suppress unused var warning\n\n        if (!include_tparams__ && !include_gqs__) return;\n\n        try {\n            if (!include_gqs__ && !include_tparams__) return;\n            if (!include_gqs__) return;\n        } catch (const std::exception& e) {\n            stan::lang::rethrow_located(e, current_statement_begin__, prog_reader__());\n            // Next line prevents compiler griping about no return\n            throw std::runtime_error(\"*** IF YOU SEE THIS, PLEASE REPORT A BUG ***\");\n        }\n    }\n\n    template <typename RNG>\n    void write_array(RNG& base_rng,\n                     Eigen::Matrix<double,Eigen::Dynamic,1>& params_r,\n                     Eigen::Matrix<double,Eigen::Dynamic,1>& vars,\n                     bool include_tparams = true,\n                     bool include_gqs = true,\n                     std::ostream* pstream = 0) const {\n      std::vector<double> params_r_vec(params_r.size());\n      for (int i = 0; i < params_r.size(); ++i)\n        params_r_vec[i] = params_r(i);\n      std::vector<double> vars_vec;\n      std::vector<int> params_i_vec;\n      write_array(base_rng, params_r_vec, params_i_vec, vars_vec, include_tparams, include_gqs, pstream);\n      vars.resize(vars_vec.size());\n      for (int i = 0; i < vars.size(); ++i)\n        vars(i) = vars_vec[i];\n    }\n\n    static std::string model_name() {\n        return \"modelde457641230_stan_model1\";\n    }\n\n\n    void constrained_param_names(std::vector<std::string>& param_names__,\n                                 bool include_tparams__ = true,\n                                 bool include_gqs__ = true) const {\n        std::stringstream param_name_stream__;\n        param_name_stream__.str(std::string());\n        param_name_stream__ << \"alpha\";\n        param_names__.push_back(param_name_stream__.str());\n        param_name_stream__.str(std::string());\n        param_name_stream__ << \"beta\";\n        param_names__.push_back(param_name_stream__.str());\n        param_name_stream__.str(std::string());\n        param_name_stream__ << \"sigma\";\n        param_names__.push_back(param_name_stream__.str());\n\n        if (!include_gqs__ && !include_tparams__) return;\n\n        if (include_tparams__) {\n        }\n\n        if (!include_gqs__) return;\n    }\n\n\n    void unconstrained_param_names(std::vector<std::string>& param_names__,\n                                   bool include_tparams__ = true,\n                                   bool include_gqs__ = true) const {\n        std::stringstream param_name_stream__;\n        param_name_stream__.str(std::string());\n        param_name_stream__ << \"alpha\";\n        param_names__.push_back(param_name_stream__.str());\n        param_name_stream__.str(std::string());\n        param_name_stream__ << \"beta\";\n        param_names__.push_back(param_name_stream__.str());\n        param_name_stream__.str(std::string());\n        param_name_stream__ << \"sigma\";\n        param_names__.push_back(param_name_stream__.str());\n\n        if (!include_gqs__ && !include_tparams__) return;\n\n        if (include_tparams__) {\n        }\n\n        if (!include_gqs__) return;\n    }\n\n}; // model\n\n}  // namespace\n\ntypedef modelde457641230_stan_model1_namespace::modelde457641230_stan_model1 stan_model;\n\n"
## 
## $model_name
## [1] "stan_model1"
## 
## $model_code
## [1] "// Stan model for simple linear regression\n\ndata {\n int < lower = 1 > N; // Sample size\n vector[N] x; // Predictor\n vector[N] y; // Outcome\n}\n\nparameters {\n real alpha; // Intercept\n real beta; // Slope (regression coefficients)\n real < lower = 0 > sigma; // Error SD\n}\n\nmodel {\n y ~ normal(alpha + x * beta , sigma);\n}\n\ngenerated quantities {\n} // The posterior predictive distribution"
## attr(,"model_name2")
## [1] "stan_model1"

Savw the file model

stan_model1 <- "stan_model1.stan"

Run the model

fit <- stan(file = stan_model1, data = stan_data, warmup = 500, iter = 1000, chains = 4, cores = 2, thin = 1)

fit
## Inference for Stan model: stan_model1.
## 4 chains, each with iter=1000; warmup=500; thin=1; 
## post-warmup draws per chain=500, total post-warmup draws=2000.
## 
##        mean se_mean   sd  2.5%   25%   50%   75% 97.5% n_eff Rhat
## alpha 12.72    0.00 0.08 12.56 12.66 12.72 12.77 12.88   729 1.01
## beta  -0.05    0.00 0.00 -0.06 -0.06 -0.05 -0.05 -0.05   727 1.00
## sigma  0.23    0.00 0.03  0.18  0.21  0.22  0.24  0.29   847 1.00
## lp__  37.38    0.05 1.32 33.93 36.82 37.75 38.33 38.84   615 1.00
## 
## Samples were drawn using NUTS(diag_e) at Mon Oct 14 19:15:08 2019.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at 
## convergence, Rhat=1).

Model value can be assessed model by analyzing the Rhat values for each parameter. When these are at or near 1, the chains have converged.

We can also look at the full posterior of our parameters by extracting them from the model object.

posterior <- extract(fit)
str(posterior)
## List of 4
##  $ alpha: num [1:2000(1d)] 12.6 12.6 12.7 12.7 12.9 ...
##   ..- attr(*, "dimnames")=List of 1
##   .. ..$ iterations: NULL
##  $ beta : num [1:2000(1d)] -0.0534 -0.0527 -0.0555 -0.0527 -0.0614 ...
##   ..- attr(*, "dimnames")=List of 1
##   .. ..$ iterations: NULL
##  $ sigma: num [1:2000(1d)] 0.194 0.209 0.252 0.215 0.2 ...
##   ..- attr(*, "dimnames")=List of 1
##   .. ..$ iterations: NULL
##  $ lp__ : num [1:2000(1d)] 36.6 37.7 37.6 38.7 35.7 ...
##   ..- attr(*, "dimnames")=List of 1
##   .. ..$ iterations: NULL

Compare results to previous estimate with “lm”

plot(y ~ x, pch = 20)

abline(lm1, col = 2, lty = 2, lw = 3)
abline( mean(posterior$alpha), mean(posterior$beta), col = 6, lw = 2)

plot(y ~ x, pch = 20)

for (i in 1:500) {
 abline(posterior$alpha[i], posterior$beta[i], col = "gray", lty = 1)
}

abline(mean(posterior$alpha), mean(posterior$beta), col = 6, lw = 2)

write("// Stan model for simple linear regression

data {
 int < lower = 1 > N; // Sample size
 vector[N] x; // Predictor
 vector[N] y; // Outcome
}

parameters {
 real alpha; // Intercept
 real beta; // Slope (regression coefficients)
 real < lower = 0 > sigma; // Error SD
}

model {
 alpha ~ normal(10, 0.1);
 beta ~ normal(1, 0.1);
 y ~ normal(alpha + x * beta , sigma);
}

generated quantities {}",

"stan_model2.stan")
stan_model2 <- "stan_model2.stan"
plot(y ~ x, pch = 20)
abline(lm_alpha, lm_beta, col = 4, lty = 2, lw = 2)

Convergence Diagnostics

plot(posterior$alpha, type = "l")

plot(posterior$beta, type = "l")

plot(posterior$sigma, type = "l")

fit_bad <- stan(stan_model1, data = stan_data, warmup = 25, iter = 50, chains = 4, cores = 2, thin = 1)
## Warning: There were 16 divergent transitions after warmup. Increasing adapt_delta above 0.8 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## Warning: There were 3 chains where the estimated Bayesian Fraction of Missing Information was low. See
## http://mc-stan.org/misc/warnings.html#bfmi-low
## Warning: Examine the pairs() plot to diagnose sampling problems
## Warning: The largest R-hat is 3.38, indicating chains have not mixed.
## Running the chains for more iterations may help. See
## http://mc-stan.org/misc/warnings.html#r-hat
## Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
## Running the chains for more iterations may help. See
## http://mc-stan.org/misc/warnings.html#bulk-ess
## Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
## Running the chains for more iterations may help. See
## http://mc-stan.org/misc/warnings.html#tail-ess
posterior_bad <- extract(fit_bad)
plot(posterior_bad$alpha, type = "l")

plot(posterior_bad$beta, type = "l")

plot(posterior_bad$sigma, type = "l")

par(mfrow = c(1,3))

plot(density(posterior$alpha), main = "Alpha")
abline(v = lm_alpha, col = 4, lty = 2)

plot(density(posterior$beta), main = "Beta")
abline(v = lm_beta, col = 4, lty = 2)

plot(density(posterior$sigma), main = "Sigma")
abline(v = lm_sigma, col = 4, lty = 2)

sum(posterior$beta>0)/length(posterior$beta)
## [1] 0
sum(posterior$beta>0.2)/length(posterior$beta)
## [1] 0
traceplot(fit)

stan_dens(fit)

stan_hist(fit)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

plot(fit, show_density = FALSE, ci_level = 0.5, outer_level = 0.95, fill_color = "salmon")
## ci_level: 0.5 (50% intervals)
## outer_level: 0.95 (95% intervals)

write("// Stan model for simple linear regression

data {
 int < lower = 1 > N; // Sample size
 vector[N] x; // Predictor
 vector[N] y; // Outcome
}

parameters {
 real alpha; // Intercept
 real beta; // Slope (regression coefficients)
 real < lower = 0 > sigma; // Error SD
}

model {
 y ~ normal(x * beta + alpha, sigma);
}

generated quantities {
 real y_rep[N];

 for (n in 1:N) {
 y_rep[n] = normal_rng(x[n] * beta + alpha, sigma);
 }

}",

"stan_model2_GQ.stan")

stan_model2_GQ <- "stan_model2_GQ.stan"
available_ppc()
## bayesplot PPC module:
##   ppc_bars
##   ppc_bars_grouped
##   ppc_boxplot
##   ppc_data
##   ppc_dens
##   ppc_dens_overlay
##   ppc_ecdf_overlay
##   ppc_error_binned
##   ppc_error_hist
##   ppc_error_hist_grouped
##   ppc_error_scatter
##   ppc_error_scatter_avg
##   ppc_error_scatter_avg_vs_x
##   ppc_freqpoly
##   ppc_freqpoly_grouped
##   ppc_hist
##   ppc_intervals
##   ppc_intervals_data
##   ppc_intervals_grouped
##   ppc_loo_intervals
##   ppc_loo_pit
##   ppc_loo_pit_overlay
##   ppc_loo_pit_qq
##   ppc_loo_ribbon
##   ppc_ribbon
##   ppc_ribbon_data
##   ppc_ribbon_grouped
##   ppc_rootogram
##   ppc_scatter
##   ppc_scatter_avg
##   ppc_scatter_avg_grouped
##   ppc_stat
##   ppc_stat_2d
##   ppc_stat_freqpoly_grouped
##   ppc_stat_grouped
##   ppc_violin_grouped
color_scheme_view(c("blue", "gray", "green", "pink", "purple",
 "red","teal","yellow"))

color_scheme_view("mix-blue-red")