caret 套件使用說明
# 查詢caret package 有實作的所有演算法
names(getModelInfo())
## [1] "ada" "AdaBag" "AdaBoost.M1"
## [4] "adaboost" "amdai" "ANFIS"
## [7] "avNNet" "awnb" "awtan"
## [10] "bag" "bagEarth" "bagEarthGCV"
## [13] "bagFDA" "bagFDAGCV" "bam"
## [16] "bartMachine" "bayesglm" "binda"
## [19] "blackboost" "blasso" "blassoAveraged"
## [22] "bridge" "brnn" "BstLm"
## [25] "bstSm" "bstTree" "C5.0"
## [28] "C5.0Cost" "C5.0Rules" "C5.0Tree"
## [31] "cforest" "chaid" "CSimca"
## [34] "ctree" "ctree2" "cubist"
## [37] "dda" "deepboost" "DENFIS"
## [40] "dnn" "dwdLinear" "dwdPoly"
## [43] "dwdRadial" "earth" "elm"
## [46] "enet" "evtree" "extraTrees"
## [49] "fda" "FH.GBML" "FIR.DM"
## [52] "foba" "FRBCS.CHI" "FRBCS.W"
## [55] "FS.HGD" "gam" "gamboost"
## [58] "gamLoess" "gamSpline" "gaussprLinear"
## [61] "gaussprPoly" "gaussprRadial" "gbm_h2o"
## [64] "gbm" "gcvEarth" "GFS.FR.MOGUL"
## [67] "GFS.LT.RS" "GFS.THRIFT" "glm.nb"
## [70] "glm" "glmboost" "glmnet_h2o"
## [73] "glmnet" "glmStepAIC" "gpls"
## [76] "hda" "hdda" "hdrda"
## [79] "HYFIS" "icr" "J48"
## [82] "JRip" "kernelpls" "kknn"
## [85] "knn" "krlsPoly" "krlsRadial"
## [88] "lars" "lars2" "lasso"
## [91] "lda" "lda2" "leapBackward"
## [94] "leapForward" "leapSeq" "Linda"
## [97] "lm" "lmStepAIC" "LMT"
## [100] "loclda" "logicBag" "LogitBoost"
## [103] "logreg" "lssvmLinear" "lssvmPoly"
## [106] "lssvmRadial" "lvq" "M5"
## [109] "M5Rules" "manb" "mda"
## [112] "Mlda" "mlp" "mlpKerasDecay"
## [115] "mlpKerasDecayCost" "mlpKerasDropout" "mlpKerasDropoutCost"
## [118] "mlpML" "mlpSGD" "mlpWeightDecay"
## [121] "mlpWeightDecayML" "monmlp" "msaenet"
## [124] "multinom" "mxnet" "mxnetAdam"
## [127] "naive_bayes" "nb" "nbDiscrete"
## [130] "nbSearch" "neuralnet" "nnet"
## [133] "nnls" "nodeHarvest" "null"
## [136] "OneR" "ordinalNet" "ORFlog"
## [139] "ORFpls" "ORFridge" "ORFsvm"
## [142] "ownn" "pam" "parRF"
## [145] "PART" "partDSA" "pcaNNet"
## [148] "pcr" "pda" "pda2"
## [151] "penalized" "PenalizedLDA" "plr"
## [154] "pls" "plsRglm" "polr"
## [157] "ppr" "PRIM" "protoclass"
## [160] "qda" "QdaCov" "qrf"
## [163] "qrnn" "randomGLM" "ranger"
## [166] "rbf" "rbfDDA" "Rborist"
## [169] "rda" "regLogistic" "relaxo"
## [172] "rf" "rFerns" "RFlda"
## [175] "rfRules" "ridge" "rlda"
## [178] "rlm" "rmda" "rocc"
## [181] "rotationForest" "rotationForestCp" "rpart"
## [184] "rpart1SE" "rpart2" "rpartCost"
## [187] "rpartScore" "rqlasso" "rqnc"
## [190] "RRF" "RRFglobal" "rrlda"
## [193] "RSimca" "rvmLinear" "rvmPoly"
## [196] "rvmRadial" "SBC" "sda"
## [199] "sdwd" "simpls" "SLAVE"
## [202] "slda" "smda" "snn"
## [205] "sparseLDA" "spikeslab" "spls"
## [208] "stepLDA" "stepQDA" "superpc"
## [211] "svmBoundrangeString" "svmExpoString" "svmLinear"
## [214] "svmLinear2" "svmLinear3" "svmLinearWeights"
## [217] "svmLinearWeights2" "svmPoly" "svmRadial"
## [220] "svmRadialCost" "svmRadialSigma" "svmRadialWeights"
## [223] "svmSpectrumString" "tan" "tanSearch"
## [226] "treebag" "vbmpRadial" "vglmAdjCat"
## [229] "vglmContRatio" "vglmCumulative" "widekernelpls"
## [232] "WM" "wsrf" "xgbDART"
## [235] "xgbLinear" "xgbTree" "xyf"
# 查詢caret package 有沒有實作rpart演算法
names(getModelInfo())[grep('rpart',names(getModelInfo()))]
## [1] "rpart" "rpart1SE" "rpart2" "rpartCost" "rpartScore"
# 查詢rpart model資訊
getModelInfo('rpart')
## $rpart
## $rpart$label
## [1] "CART"
##
## $rpart$library
## [1] "rpart"
##
## $rpart$type
## [1] "Regression" "Classification"
##
## $rpart$parameters
## parameter class label
## 1 cp numeric Complexity Parameter
##
## $rpart$grid
## function (x, y, len = NULL, search = "grid")
## {
## dat <- if (is.data.frame(x))
## x
## else as.data.frame(x)
## dat$.outcome <- y
## initialFit <- rpart::rpart(.outcome ~ ., data = dat, control = rpart::rpart.control(cp = 0))$cptable
## initialFit <- initialFit[order(-initialFit[, "CP"]), , drop = FALSE]
## if (search == "grid") {
## if (nrow(initialFit) < len) {
## tuneSeq <- data.frame(cp = seq(min(initialFit[, "CP"]),
## max(initialFit[, "CP"]), length = len))
## }
## else tuneSeq <- data.frame(cp = initialFit[1:len, "CP"])
## colnames(tuneSeq) <- "cp"
## }
## else {
## tuneSeq <- data.frame(cp = unique(sample(initialFit[,
## "CP"], size = len, replace = TRUE)))
## }
## tuneSeq
## }
##
## $rpart$loop
## function (grid)
## {
## grid <- grid[order(grid$cp, decreasing = FALSE), , drop = FALSE]
## loop <- grid[1, , drop = FALSE]
## submodels <- list(grid[-1, , drop = FALSE])
## list(loop = loop, submodels = submodels)
## }
##
## $rpart$fit
## function (x, y, wts, param, lev, last, classProbs, ...)
## {
## cpValue <- if (!last)
## param$cp
## else 0
## theDots <- list(...)
## if (any(names(theDots) == "control")) {
## theDots$control$cp <- cpValue
## theDots$control$xval <- 0
## ctl <- theDots$control
## theDots$control <- NULL
## }
## else ctl <- rpart::rpart.control(cp = cpValue, xval = 0)
## if (!is.null(wts))
## theDots$weights <- wts
## modelArgs <- c(list(formula = as.formula(".outcome ~ ."),
## data = if (is.data.frame(x)) x else as.data.frame(x),
## control = ctl), theDots)
## modelArgs$data$.outcome <- y
## out <- do.call(rpart::rpart, modelArgs)
## if (last)
## out <- rpart::prune.rpart(out, cp = param$cp)
## out
## }
##
## $rpart$predict
## function (modelFit, newdata, submodels = NULL)
## {
## if (!is.data.frame(newdata))
## newdata <- as.data.frame(newdata)
## pType <- if (modelFit$problemType == "Classification")
## "class"
## else "vector"
## out <- predict(modelFit, newdata, type = pType)
## if (!is.null(submodels)) {
## tmp <- vector(mode = "list", length = nrow(submodels) +
## 1)
## tmp[[1]] <- out
## for (j in seq(along = submodels$cp)) {
## prunedFit <- rpart::prune.rpart(modelFit, cp = submodels$cp[j])
## tmp[[j + 1]] <- predict(prunedFit, newdata, type = pType)
## }
## out <- tmp
## }
## out
## }
##
## $rpart$prob
## function (modelFit, newdata, submodels = NULL)
## {
## if (!is.data.frame(newdata))
## newdata <- as.data.frame(newdata)
## out <- predict(modelFit, newdata, type = "prob")
## if (!is.null(submodels)) {
## tmp <- vector(mode = "list", length = nrow(submodels) +
## 1)
## tmp[[1]] <- out
## for (j in seq(along = submodels$cp)) {
## prunedFit <- rpart::prune.rpart(modelFit, cp = submodels$cp[j])
## tmpProb <- predict(prunedFit, newdata, type = "prob")
## tmp[[j + 1]] <- as.data.frame(tmpProb[, modelFit$obsLevels,
## drop = FALSE])
## }
## out <- tmp
## }
## out
## }
##
## $rpart$predictors
## function (x, surrogate = TRUE, ...)
## {
## out <- as.character(x$frame$var)
## out <- out[!(out %in% c("<leaf>"))]
## if (surrogate) {
## splits <- x$splits
## splits <- splits[splits[, "adj"] > 0, ]
## out <- c(out, rownames(splits))
## }
## unique(out)
## }
##
## $rpart$varImp
## function (object, surrogates = FALSE, competes = TRUE, ...)
## {
## if (nrow(object$splits) > 0) {
## tmp <- rownames(object$splits)
## rownames(object$splits) <- 1:nrow(object$splits)
## splits <- data.frame(object$splits)
## splits$var <- tmp
## splits$type <- ""
## frame <- as.data.frame(object$frame)
## index <- 0
## for (i in 1:nrow(frame)) {
## if (frame$var[i] != "<leaf>") {
## index <- index + 1
## splits$type[index] <- "primary"
## if (frame$ncompete[i] > 0) {
## for (j in 1:frame$ncompete[i]) {
## index <- index + 1
## splits$type[index] <- "competing"
## }
## }
## if (frame$nsurrogate[i] > 0) {
## for (j in 1:frame$nsurrogate[i]) {
## index <- index + 1
## splits$type[index] <- "surrogate"
## }
## }
## }
## }
## splits$var <- factor(as.character(splits$var))
## if (!surrogates)
## splits <- subset(splits, type != "surrogate")
## if (!competes)
## splits <- subset(splits, type != "competing")
## out <- aggregate(splits$improve, list(Variable = splits$var),
## sum, na.rm = TRUE)
## }
## else {
## out <- data.frame(x = numeric(), Vaiable = character())
## }
## allVars <- colnames(attributes(object$terms)$factors)
## if (!all(allVars %in% out$Variable)) {
## missingVars <- allVars[!(allVars %in% out$Variable)]
## zeros <- data.frame(x = rep(0, length(missingVars)),
## Variable = missingVars)
## out <- rbind(out, zeros)
## }
## out2 <- data.frame(Overall = out$x)
## rownames(out2) <- out$Variable
## out2
## }
##
## $rpart$levels
## function (x)
## x$obsLevels
##
## $rpart$trim
## function (x)
## {
## x$call <- list(na.action = (x$call)$na.action)
## x$x <- NULL
## x$y <- NULL
## x$where <- NULL
## x
## }
##
## $rpart$tags
## [1] "Tree-Based Model" "Implicit Feature Selection"
## [3] "Handle Missing Predictor Data" "Accepts Case Weights"
##
## $rpart$sort
## function (x)
## x[order(x[, 1], decreasing = TRUE), ]
##
##
## $rpart1SE
## $rpart1SE$label
## [1] "CART"
##
## $rpart1SE$library
## [1] "rpart"
##
## $rpart1SE$type
## [1] "Regression" "Classification"
##
## $rpart1SE$parameters
## parameter class label
## 1 parameter character parameter
##
## $rpart1SE$grid
## function (x, y, len = NULL, search = "grid")
## data.frame(parameter = "none")
##
## $rpart1SE$loop
## NULL
##
## $rpart1SE$fit
## function (x, y, wts, param, lev, last, classProbs, ...)
## {
## dat <- if (is.data.frame(x))
## x
## else as.data.frame(x)
## dat$.outcome <- y
## if (!is.null(wts)) {
## out <- rpart::rpart(.outcome ~ ., data = dat, ...)
## }
## else {
## out <- rpart::rpart(.outcome ~ ., data = dat, weights = wts,
## ...)
## }
## out
## }
##
## $rpart1SE$predict
## function (modelFit, newdata, submodels = NULL)
## {
## if (!is.data.frame(newdata))
## newdata <- as.data.frame(newdata)
## out <- if (modelFit$problemType == "Classification")
## predict(modelFit, newdata, type = "class")
## else predict(modelFit, newdata)
## out
## }
##
## $rpart1SE$prob
## function (modelFit, newdata, submodels = NULL)
## {
## if (!is.data.frame(newdata))
## newdata <- as.data.frame(newdata)
## predict(modelFit, newdata, type = "prob")
## }
##
## $rpart1SE$predictors
## function (x, surrogate = TRUE, ...)
## {
## out <- as.character(x$frame$var)
## out <- out[!(out %in% c("<leaf>"))]
## if (surrogate) {
## splits <- x$splits
## splits <- splits[splits[, "adj"] > 0, ]
## out <- c(out, rownames(splits))
## }
## unique(out)
## }
##
## $rpart1SE$varImp
## function (object, surrogates = FALSE, competes = TRUE, ...)
## {
## tmp <- rownames(object$splits)
## rownames(object$splits) <- 1:nrow(object$splits)
## splits <- data.frame(object$splits)
## splits$var <- tmp
## splits$type <- ""
## frame <- as.data.frame(object$frame)
## index <- 0
## for (i in 1:nrow(frame)) {
## if (frame$var[i] != "<leaf>") {
## index <- index + 1
## splits$type[index] <- "primary"
## if (frame$ncompete[i] > 0) {
## for (j in 1:frame$ncompete[i]) {
## index <- index + 1
## splits$type[index] <- "competing"
## }
## }
## if (frame$nsurrogate[i] > 0) {
## for (j in 1:frame$nsurrogate[i]) {
## index <- index + 1
## splits$type[index] <- "surrogate"
## }
## }
## }
## }
## splits$var <- factor(as.character(splits$var))
## if (!surrogates)
## splits <- subset(splits, type != "surrogate")
## if (!competes)
## splits <- subset(splits, type != "competing")
## out <- aggregate(splits$improve, list(Variable = splits$var),
## sum, na.rm = TRUE)
## allVars <- colnames(attributes(object$terms)$factors)
## if (!all(allVars %in% out$Variable)) {
## missingVars <- allVars[!(allVars %in% out$Variable)]
## zeros <- data.frame(x = rep(0, length(missingVars)),
## Variable = missingVars)
## out <- rbind(out, zeros)
## }
## out2 <- data.frame(Overall = out$x)
## rownames(out2) <- out$Variable
## out2
## }
##
## $rpart1SE$levels
## function (x)
## x$obsLevels
##
## $rpart1SE$trim
## function (x)
## {
## x$call <- list(na.action = (x$call)$na.action)
## x$x <- NULL
## x$y <- NULL
## x$where <- NULL
## x
## }
##
## $rpart1SE$notes
## [1] "This CART model replicates the same process used by the `rpart` function where the model complexity is determined using the one-standard error method. This procedure is replicated inside of the resampling done by `train` so that an external resampling estimate can be obtained."
##
## $rpart1SE$tags
## [1] "Tree-Based Model" "Implicit Feature Selection"
## [3] "Handle Missing Predictor Data" "Accepts Case Weights"
##
## $rpart1SE$sort
## function (x)
## x[order(x[, 1], decreasing = TRUE), ]
##
##
## $rpart2
## $rpart2$label
## [1] "CART"
##
## $rpart2$library
## [1] "rpart"
##
## $rpart2$type
## [1] "Regression" "Classification"
##
## $rpart2$parameters
## parameter class label
## 1 maxdepth numeric Max Tree Depth
##
## $rpart2$grid
## function (x, y, len = NULL, search = "grid")
## {
## dat <- if (is.data.frame(x))
## x
## else as.data.frame(x)
## dat$.outcome <- y
## initialFit <- rpart::rpart(.outcome ~ ., data = dat, control = rpart::rpart.control(cp = 0))$cptable
## initialFit <- initialFit[order(-initialFit[, "CP"]), "nsplit",
## drop = FALSE]
## initialFit <- initialFit[initialFit[, "nsplit"] > 0 & initialFit[,
## "nsplit"] <= 30, , drop = FALSE]
## if (search == "grid") {
## if (dim(initialFit)[1] < len) {
## cat("note: only", nrow(initialFit), "possible values of the max tree depth from the initial fit.\n",
## "Truncating the grid to", nrow(initialFit), ".\n\n")
## tuneSeq <- as.data.frame(initialFit)
## }
## else tuneSeq <- as.data.frame(initialFit[1:len, ])
## colnames(tuneSeq) <- "maxdepth"
## }
## else {
## tuneSeq <- data.frame(maxdepth = unique(sample(as.vector(initialFit[,
## 1]), size = len, replace = TRUE)))
## }
## tuneSeq
## }
##
## $rpart2$loop
## function (grid)
## {
## grid <- grid[order(grid$maxdepth, decreasing = TRUE), , drop = FALSE]
## loop <- grid[1, , drop = FALSE]
## submodels <- list(grid[-1, , drop = FALSE])
## list(loop = loop, submodels = submodels)
## }
##
## $rpart2$fit
## function (x, y, wts, param, lev, last, classProbs, ...)
## {
## theDots <- list(...)
## if (any(names(theDots) == "control")) {
## theDots$control$maxdepth <- param$maxdepth
## theDots$control$xval <- 0
## ctl <- theDots$control
## theDots$control <- NULL
## }
## else ctl <- rpart::rpart.control(maxdepth = param$maxdepth,
## xval = 0)
## if (!is.null(wts))
## theDots$weights <- wts
## modelArgs <- c(list(formula = as.formula(".outcome ~ ."),
## data = if (is.data.frame(x)) x else as.data.frame(x),
## control = ctl), theDots)
## modelArgs$data$.outcome <- y
## out <- do.call(rpart::rpart, modelArgs)
## out
## }
##
## $rpart2$predict
## function (modelFit, newdata, submodels = NULL)
## {
## depth2cp <- function(x, depth) {
## out <- approx(x[, "nsplit"], x[, "CP"], depth)$y
## out[depth > max(x[, "nsplit"])] <- min(x[, "CP"]) * 0.99
## out
## }
## if (!is.data.frame(newdata))
## newdata <- as.data.frame(newdata)
## pType <- if (modelFit$problemType == "Classification")
## "class"
## else "vector"
## out <- predict(modelFit, newdata, type = pType)
## if (!is.null(submodels)) {
## tmp <- vector(mode = "list", length = nrow(submodels) +
## 1)
## tmp[[1]] <- out
## cpValues <- depth2cp(modelFit$cptable, submodels$maxdepth)
## for (j in seq(along = cpValues)) {
## prunedFit <- rpart::prune.rpart(modelFit, cp = cpValues[j])
## tmp[[j + 1]] <- predict(prunedFit, newdata, type = pType)
## }
## out <- tmp
## }
## out
## }
##
## $rpart2$prob
## function (modelFit, newdata, submodels = NULL)
## {
## depth2cp <- function(x, depth) {
## out <- approx(x[, "nsplit"], x[, "CP"], depth)$y
## out[depth > max(x[, "nsplit"])] <- min(x[, "CP"]) * 0.99
## out
## }
## if (!is.data.frame(newdata))
## newdata <- as.data.frame(newdata)
## out <- predict(modelFit, newdata, type = "prob")
## if (!is.null(submodels)) {
## tmp <- vector(mode = "list", length = nrow(submodels) +
## 1)
## tmp[[1]] <- out
## cpValues <- depth2cp(modelFit$cptable, submodels$maxdepth)
## for (j in seq(along = cpValues)) {
## prunedFit <- rpart::prune.rpart(modelFit, cp = cpValues[j])
## tmpProb <- predict(prunedFit, newdata, type = "prob")
## tmp[[j + 1]] <- as.data.frame(tmpProb[, modelFit$obsLevels,
## drop = FALSE])
## }
## out <- tmp
## }
## out
## }
##
## $rpart2$predictors
## function (x, surrogate = TRUE, ...)
## {
## out <- as.character(x$frame$var)
## out <- out[!(out %in% c("<leaf>"))]
## if (surrogate) {
## splits <- x$splits
## splits <- splits[splits[, "adj"] > 0, ]
## out <- c(out, rownames(splits))
## }
## unique(out)
## }
##
## $rpart2$varImp
## function (object, surrogates = FALSE, competes = TRUE, ...)
## {
## tmp <- rownames(object$splits)
## rownames(object$splits) <- 1:nrow(object$splits)
## splits <- data.frame(object$splits)
## splits$var <- tmp
## splits$type <- ""
## frame <- as.data.frame(object$frame)
## index <- 0
## for (i in 1:nrow(frame)) {
## if (frame$var[i] != "<leaf>") {
## index <- index + 1
## splits$type[index] <- "primary"
## if (frame$ncompete[i] > 0) {
## for (j in 1:frame$ncompete[i]) {
## index <- index + 1
## splits$type[index] <- "competing"
## }
## }
## if (frame$nsurrogate[i] > 0) {
## for (j in 1:frame$nsurrogate[i]) {
## index <- index + 1
## splits$type[index] <- "surrogate"
## }
## }
## }
## }
## splits$var <- factor(as.character(splits$var))
## if (!surrogates)
## splits <- subset(splits, type != "surrogate")
## if (!competes)
## splits <- subset(splits, type != "competing")
## out <- aggregate(splits$improve, list(Variable = splits$var),
## sum, na.rm = TRUE)
## allVars <- colnames(attributes(object$terms)$factors)
## if (!all(allVars %in% out$Variable)) {
## missingVars <- allVars[!(allVars %in% out$Variable)]
## zeros <- data.frame(x = rep(0, length(missingVars)),
## Variable = missingVars)
## out <- rbind(out, zeros)
## }
## out2 <- data.frame(Overall = out$x)
## rownames(out2) <- out$Variable
## out2
## }
##
## $rpart2$levels
## function (x)
## x$obsLevels
##
## $rpart2$trim
## function (x)
## {
## x$call <- list(na.action = (x$call)$na.action)
## x$x <- NULL
## x$y <- NULL
## x$where <- NULL
## x
## }
##
## $rpart2$tags
## [1] "Tree-Based Model" "Implicit Feature Selection"
## [3] "Handle Missing Predictor Data" "Accepts Case Weights"
##
## $rpart2$sort
## function (x)
## x[order(x[, 1]), ]
##
##
## $rpartCost
## $rpartCost$label
## [1] "Cost-Sensitive CART"
##
## $rpartCost$library
## [1] "rpart" "plyr"
##
## $rpartCost$type
## [1] "Classification"
##
## $rpartCost$parameters
## parameter class label
## 1 cp numeric Complexity Parameter
## 2 Cost numeric Cost
##
## $rpartCost$grid
## function (x, y, len = NULL, search = "grid")
## {
## dat <- if (is.data.frame(x))
## x
## else as.data.frame(x)
## dat$.outcome <- y
## initialFit <- rpart::rpart(.outcome ~ ., data = dat, control = rpart::rpart.control(cp = 0))$cptable
## initialFit <- initialFit[order(-initialFit[, "CP"]), , drop = FALSE]
## if (search == "grid") {
## if (nrow(initialFit) < len) {
## tuneSeq <- expand.grid(cp = seq(min(initialFit[,
## "CP"]), max(initialFit[, "CP"]), length = len),
## Cost = 1:len)
## }
## else tuneSeq <- data.frame(cp = initialFit[1:len, "CP"],
## Cost = 1:len)
## colnames(tuneSeq) <- c("cp", "Cost")
## }
## else {
## tuneSeq <- data.frame(cp = 10^runif(len, min = -8, max = -1),
## Cost = runif(len, min = 1, max = 30))
## }
## tuneSeq
## }
##
## $rpartCost$loop
## function (grid)
## {
## loop <- plyr::ddply(grid, plyr::.(Cost), function(x) c(cp = min(x$cp)))
## submodels <- vector(mode = "list", length = nrow(loop))
## for (i in seq(along = submodels)) {
## larger_cp <- subset(grid, subset = Cost == loop$Cost[i] &
## cp > loop$cp[i])
## submodels[[i]] <- data.frame(cp = sort(larger_cp$cp))
## }
## list(loop = loop, submodels = submodels)
## }
##
## $rpartCost$fit
## function (x, y, wts, param, lev, last, classProbs, ...)
## {
## theDots <- list(...)
## if (any(names(theDots) == "control")) {
## theDots$control$cp <- param$cp
## theDots$control$xval <- 0
## ctl <- theDots$control
## theDots$control <- NULL
## }
## else ctl <- rpart::rpart.control(cp = param$cp, xval = 0)
## lmat <- matrix(c(0, 1, param$Cost, 0), ncol = 2)
## rownames(lmat) <- colnames(lmat) <- levels(y)
## if (any(names(theDots) == "parms")) {
## theDots$parms$loss <- lmat
## }
## else parms <- list(loss = lmat)
## if (!is.null(wts))
## theDots$weights <- wts
## modelArgs <- c(list(formula = as.formula(".outcome ~ ."),
## data = if (is.data.frame(x)) x else as.data.frame(x),
## parms = parms, control = ctl), theDots)
## modelArgs$data$.outcome <- y
## out <- do.call(rpart::rpart, modelArgs)
## out
## }
##
## $rpartCost$predict
## function (modelFit, newdata, submodels = NULL)
## {
## if (!is.data.frame(newdata))
## newdata <- as.data.frame(newdata)
## pType <- if (modelFit$problemType == "Classification")
## "class"
## else "vector"
## out <- predict(modelFit, newdata, type = pType)
## if (!is.null(submodels)) {
## tmp <- vector(mode = "list", length = nrow(submodels) +
## 1)
## tmp[[1]] <- out
## for (j in seq(along = submodels$cp)) {
## prunedFit <- rpart::prune.rpart(modelFit, cp = submodels$cp[j])
## tmp[[j + 1]] <- predict(prunedFit, newdata, type = pType)
## }
## out <- tmp
## }
## out
## }
##
## $rpartCost$levels
## function (x)
## x$obsLevels
##
## $rpartCost$prob
## NULL
##
## $rpartCost$tags
## [1] "Tree-Based Model" "Implicit Feature Selection"
## [3] "Cost Sensitive Learning" "Two Class Only"
## [5] "Handle Missing Predictor Data" "Accepts Case Weights"
##
## $rpartCost$sort
## function (x)
## x[order(-x$cp, -x$Cost), ]
##
##
## $rpartScore
## $rpartScore$label
## [1] "CART or Ordinal Responses"
##
## $rpartScore$library
## [1] "rpartScore" "plyr"
##
## $rpartScore$type
## [1] "Classification"
##
## $rpartScore$parameters
## parameter class label
## 1 cp numeric Complexity Parameter
## 2 split character Split Function
## 3 prune character Pruning Measure
##
## $rpartScore$grid
## function (x, y, len = NULL, search = "grid")
## {
## dat <- if (is.data.frame(x))
## x
## else as.data.frame(x)
## dat$.outcome <- y
## initialFit <- rpart::rpart(.outcome ~ ., data = dat, control = rpart::rpart.control(cp = 0))$cptable
## initialFit <- initialFit[order(-initialFit[, "CP"]), , drop = FALSE]
## if (search == "grid") {
## if (nrow(initialFit) < len) {
## tuneSeq <- expand.grid(cp = seq(min(initialFit[,
## "CP"]), max(initialFit[, "CP"]), length = len),
## split = c("abs", "quad"), prune = c("mr", "mc"))
## }
## else tuneSeq <- expand.grid(cp = initialFit[1:len, "CP"],
## split = c("abs", "quad"), prune = c("mr", "mc"))
## colnames(tuneSeq)[1] <- "cp"
## }
## else {
## tuneSeq <- expand.grid(cp = unique(sample(initialFit[,
## "CP"], size = len, replace = TRUE)), split = c("abs",
## "quad"), prune = c("mr", "mc"))
## }
## tuneSeq
## }
##
## $rpartScore$fit
## function (x, y, wts, param, lev, last, classProbs, ...)
## {
## cpValue <- if (!last)
## param$cp
## else 0
## theDots <- list(...)
## if (any(names(theDots) == "control")) {
## theDots$control$cp <- cpValue
## theDots$control$xval <- 0
## ctl <- theDots$control
## theDots$control <- NULL
## }
## else ctl <- rpart::rpart.control(cp = cpValue, xval = 0)
## if (!is.null(wts))
## theDots$weights <- wts
## modelArgs <- c(list(formula = as.formula(".outcome ~ ."),
## data = if (is.data.frame(x)) x else as.data.frame(x),
## split = as.character(param$split), prune = as.character(param$prune),
## control = ctl), theDots)
## modelArgs$data$.outcome <- as.numeric(y)
## out <- do.call(rpartScore::rpartScore, modelArgs)
## if (last)
## out <- rpart::prune.rpart(out, cp = param$cp)
## out
## }
##
## $rpartScore$predict
## function (modelFit, newdata, submodels = NULL)
## {
## if (!is.data.frame(newdata))
## newdata <- as.data.frame(newdata)
## out <- modelFit$obsLevels[predict(modelFit, newdata)]
## if (!is.null(submodels)) {
## tmp <- vector(mode = "list", length = nrow(submodels) +
## 1)
## tmp[[1]] <- out
## for (j in seq(along = submodels$cp)) {
## prunedFit <- rpart::prune.rpart(modelFit, cp = submodels$cp[j])
## tmp[[j + 1]] <- modelFit$obsLevels[predict(prunedFit,
## newdata)]
## }
## out <- tmp
## }
## out
## }
##
## $rpartScore$prob
## NULL
##
## $rpartScore$predictors
## function (x, surrogate = TRUE, ...)
## {
## out <- as.character(x$frame$var)
## out <- out[!(out %in% c("<leaf>"))]
## if (surrogate) {
## splits <- x$splits
## splits <- splits[splits[, "adj"] > 0, ]
## out <- c(out, rownames(splits))
## }
## unique(out)
## }
##
## $rpartScore$varImp
## function (object, surrogates = FALSE, competes = TRUE, ...)
## {
## allVars <- all.vars(object$terms)
## allVars <- allVars[allVars != ".outcome"]
## out <- data.frame(Overall = object$variable.importance, Variable = names(object$variable.importance))
## rownames(out) <- names(object$variable.importance)
## if (!all(allVars %in% out$Variable)) {
## missingVars <- allVars[!(allVars %in% out$Variable)]
## zeros <- data.frame(Overall = rep(0, length(missingVars)),
## Variable = missingVars)
## out <- rbind(out, zeros)
## }
## rownames(out) <- out$Variable
## out$Variable <- NULL
## out
## }
##
## $rpartScore$levels
## function (x)
## x$obsLevels
##
## $rpartScore$trim
## function (x)
## {
## x$call <- list(na.action = (x$call)$na.action)
## x$x <- NULL
## x$y <- NULL
## x$where <- NULL
## x
## }
##
## $rpartScore$tags
## [1] "Tree-Based Model" "Implicit Feature Selection"
## [3] "Handle Missing Predictor Data" "Accepts Case Weights"
## [5] "Ordinal Outcomes"
##
## $rpartScore$sort
## function (x)
## x[order(x[, 1], decreasing = TRUE), ]
# 查詢rpart model可以tune的parameters
getModelInfo('rpart')$rpart$parameters
## parameter class label
## 1 cp numeric Complexity Parameter