Checking database
## [1] "cor_mir" "cor_tf" "targets_mir" "targets_tf"
## [1] "tf" "feature" "study"
## [1] "tf" "feature" "ACC" "BLCA" "BRCA_1"
## [6] "BRCA_2" "CESC" "COAD_READ*" "GBM*" "HNSC"
## [11] "KICH" "KIRC" "KIRP" "LAML" "LGG"
## [16] "LIHC" "LUAD" "LUSC" "MESO" "OV"
## [21] "PAAD" "PCPG" "PRAD" "SARC" "SKCM"
## [26] "STES*" "TGCT" "THCA" "THYM" "UCEC"
## [31] "UVM"
Finding targets for ACC
# Manual function
tf <- TF_list[1:300]
study.tf <- tbl(conn, "targets_tf") %>%
filter(study == 'ACC') %>%
pull(tf) %>%
unique
tf <- tf[tf %in% study.tf]
study <- "ACC"
ll1 <- list()
ll2 <- list()
for (m in 1:length(tf)) {
for (s in 1:length(study)) {
tars_stat <- stat_make_targets(reg = tf[m], study = study[s], type = "tf")
tars <- stat_collect_targets(conn, stat = tars_stat)
stat <- stat_make(tf[m], study = study[s], targets = tars, type = "tf")
df <- stat_collect(conn, study = study[s], stat,type = "tf")
ll2[[s]] <- df
}
ll1[[m]] <- ll2
}
ll <- unlist(ll1, recursive = FALSE)
dat <- do.call("rbind", ll)
dat$cor <- dat$cor/100
dat <- na.omit(dat)
Finding targets for COAD-READ
## Using tf, feature as id variables
LS0tCnRpdGxlOiAiY1JlZ3Vsb21lLmRiIgpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiCm91dHB1dDoKICBybWFya2Rvd246Omh0bWxfZG9jdW1lbnQ6CiAgICB0aGVtZTogbHVtZW4KICAgIGhpZ2hsaWdodDogemVuYnVybgogICAgdG9jOiB0cnVlCiAgICBudW1iZXJfc2VjdGlvbnM6IHRydWUKICAgIGRmX3ByaW50OiBwYWdlZAogICAgY29kZV9kb3dubG9hZDogdHJ1ZQogICAgdG9jX2Zsb2F0OiB0cnVlCiAgICB0b2NfZGVwdGg6IDQKLS0tCgoKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSkKYGBgCgojIExpYnJhcmllcwpgYGB7ciwgbWVzc2FnZT1GQUxTRX0KbGlicmFyeShjUmVndWxvbWUpCmxpYnJhcnkoUlNRTGl0ZSkKbGlicmFyeShnZ3Bsb3QyKQpsaWJyYXJ5KGRwbHlyKQpsaWJyYXJ5KFIudXRpbHMpCmBgYAoKCiMgRGF0YWJhc2UKYGBge1J9CmZpbGUgPC0gImNSZWd1bG9tZS5kYiIKCmlmKCFmaWxlLmV4aXN0cyhmaWxlKSl7CiAgZG93bmxvYWRlcjo6ZG93bmxvYWQoImh0dHBzOi8vczMtZXUtd2VzdC0xLmFtYXpvbmF3cy5jb20vcGZpZ3NoYXJlLXUtZmlsZXMvOTUzNzM4NS9jUmVndWxvbWUuZGIuZ3oiLCJjUmVndWxvbWUuZGIuZ3oiKQogIGd1bnppcChwYXN0ZTAoZmlsZSwiLmd6IiksIHJlbW92ZSA9IEZBTFNFKQp9CiMgY29ubmVjdCB0byB0aGUgZGIgZmlsZQpjb25uIDwtIGRiQ29ubmVjdChTUUxpdGUoKSwgZmlsZSkKYGBgCgojIENoZWNraW5nIGRhdGFiYXNlCgpgYGB7ciBwcmVzc3VyZSwgZWNobz1UfQojIGNoZWNrIHRhYmxlcwpkYkxpc3RUYWJsZXMoY29ubikKCiMgY2hlY2sgZmllbGRzCmRiTGlzdEZpZWxkcyhjb25uLCJ0YXJnZXRzX3RmIikKCiMgYXZhaWxhYmxlIHN0dWRpZXMKZGJMaXN0RmllbGRzKGNvbm4sICJjb3JfdGYiKQpgYGAKCiMgRmluZGluZyB0YXJnZXRzIGZvciBBQ0MKYGBge3IsIGVjaG89VH0KVEZfbGlzdCA8LSBUQ0dBYmlvbGlua3M6OjpFQUdlbmVzICU+JSAKICBmaWx0ZXIoRmFtaWx5ICVpbiUgInRyYW5zY3JpcHRpb24gcmVndWxhdG9yIikgJT4lIAogIHB1bGwoR2VuZSkgJT4lIAogIGFzLmNoYXJhY3RlcigpCgoKIyBNYW51YWwgZnVuY3Rpb24KY3JlZ190ZiA8LSBnZXRfdGYoY29ubiwKICAgICAgICAgICAgICAgICAgdGYgPSBURl9saXN0WzE6MzAwXSwKICAgICAgICAgICAgICAgICAgc3R1ZHkgPSAiQUNDIiwKICAgICAgICAgICAgICAgICAgdGFyZ2V0c19vbmx5ID0gVFJVRSkKY3JlZ190ZgoKCiMgTWFudWFsIGZ1bmN0aW9uCnRmIDwtIFRGX2xpc3RbMTozMDBdCnN0dWR5LnRmIDwtIHRibChjb25uLCAidGFyZ2V0c190ZiIpICU+JSAKICBmaWx0ZXIoc3R1ZHkgPT0gJ0FDQycpICU+JSAKICBwdWxsKHRmKSAlPiUgCiAgdW5pcXVlCnRmIDwtIHRmW3RmICVpbiUgc3R1ZHkudGZdCnN0dWR5IDwtICJBQ0MiCgpsbDEgPC0gbGlzdCgpCmxsMiA8LSBsaXN0KCkKZm9yIChtIGluIDE6bGVuZ3RoKHRmKSkgewogIGZvciAocyBpbiAxOmxlbmd0aChzdHVkeSkpIHsKICAgIHRhcnNfc3RhdCA8LSBzdGF0X21ha2VfdGFyZ2V0cyhyZWcgPSB0ZlttXSwgc3R1ZHkgPSBzdHVkeVtzXSwgdHlwZSA9ICJ0ZiIpCiAgICB0YXJzIDwtIHN0YXRfY29sbGVjdF90YXJnZXRzKGNvbm4sIHN0YXQgPSB0YXJzX3N0YXQpCiAgICBzdGF0IDwtIHN0YXRfbWFrZSh0ZlttXSwgc3R1ZHkgPSBzdHVkeVtzXSwgdGFyZ2V0cyA9IHRhcnMsIHR5cGUgPSAidGYiKQogICAgZGYgPC0gc3RhdF9jb2xsZWN0KGNvbm4sIHN0dWR5ID0gc3R1ZHlbc10sIHN0YXQsdHlwZSA9ICJ0ZiIpCiAgICBsbDJbW3NdXSA8LSBkZgogIH0KICBsbDFbW21dXSA8LSBsbDIKfQpsbCA8LSB1bmxpc3QobGwxLCByZWN1cnNpdmUgPSBGQUxTRSkKZGF0IDwtIGRvLmNhbGwoInJiaW5kIiwgbGwpCmRhdCRjb3IgPC0gZGF0JGNvci8xMDAKZGF0IDwtIG5hLm9taXQoZGF0KQpgYGAKCgojIEZpbmRpbmcgdGFyZ2V0cyBmb3IgQ09BRC1SRUFECmBgYHtyLCBlY2hvPVR9ClRGX2xpc3QgPC0gVENHQWJpb2xpbmtzOjo6RUFHZW5lcyAlPiUgCiAgZmlsdGVyKEZhbWlseSAlaW4lICJ0cmFuc2NyaXB0aW9uIHJlZ3VsYXRvciIpICU+JSAKICBwdWxsKEdlbmUpICU+JSAKICBhcy5jaGFyYWN0ZXIoKQoKIyBnZXQgYXZhaWxhYmxlIFRGIGZvciBzdHVkeQpzdHVkeS50ZiA8LSB0YmwoY29ubiwgInRhcmdldHNfdGYiKSAlPiUgCiAgZmlsdGVyKHN0dWR5ID09ICdDT0FEX1JFQUQqJykgJT4lIAogIHB1bGwodGYpICU+JSAKICB1bmlxdWUKCiMgZmluZCB0aGUgVEYgd2l0aGluIGRhdGFiYXNlIHRhYmxlCmlkeCA8LSB3aGljaChURl9saXN0ICVpbiUgc3R1ZHkudGYpCgpyZXN1bHRzIDwtIHBseXI6OmFkcGx5KFRGX2xpc3RbaWR4XVsxOjNdLAogICAgICAgICAgICAgICAgICAgICAgIC5tYXJnaW5zID0gMSwKICAgICAgICAgICAgICAgICAgICAgICAuZnVuID0gZnVuY3Rpb24oeCl7CiAgICAgICAgICAgICAgICAgICAgICAgICAjIGdldCB0ZiB0YXJnZXRzCiAgICAgICAgICAgICAgICAgICAgICAgICB0YXJzIDwtIHRibChjb25uLCAidGFyZ2V0c190ZiIpICAlPiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgIGZpbHRlcih0ZiA9PSB4ICYgc3R1ZHkgPT0gICJDT0FEX1JFQUQqIikgJT4lIAogICAgICAgICAgICAgICAgICAgICAgICAgICBwdWxsKDIpCiAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgIHRibChjb25uLCAiY29yX3RmIikgJT4lIAogICAgICAgICAgICAgICAgICAgICAgICAgICBzZWxlY3QoYygidGYiLCAiZmVhdHVyZSIsICJDT0FEX1JFQUQqIikpICU+JSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgZmlsdGVyKHRmID09IHggJiBmZWF0dXJlICVpbiUgdGFycykgJT4lIAogICAgICAgICAgICAgICAgICAgICAgICAgICBhcy5kYXRhLmZyYW1lCiAgICAgICAgICAgICAgICAgICAgICAgfSwuaWQgPSBOVUxMKQpyZXN1bHRzCnJlc3VsdHMgPC0gcmVzdWx0cyAlPiUgcmVzaGFwZTI6Om1lbHQoKQpjb2xuYW1lcyhyZXN1bHRzKSA8LSBjKCJ0ZiIsICJmZWF0dXJlIiwgInN0dWR5IiwiY29yIikKcmVzdWx0cyRjb3IgPC0gcmVzdWx0cyRjb3IvMTAwCnJlc3VsdHMgPC0gbmEub21pdChyZXN1bHRzKQpyZXN1bHRzCmBgYAo=