Logit Analysis

Reading Data into R Environment

## [1] 612  14

Building Logistic Regression Model

## 
## Call:
## glm(formula = Won ~ TossWon + BatFrist + HomeMatch + PPRuns + 
##     PPWickets + FourCount + SixCount + WicketsLost + TotelRuns + 
##     Year + Team, family = binomial(), data = IPLData)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3241  -0.8824  -0.2143   0.8511   2.2801  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   0.765059   0.872891   0.876   0.3808    
## TossWon1      0.175730   0.311800   0.564   0.5730    
## BatFrist1    -0.352356   0.315292  -1.118   0.2638    
## HomeMatch1    0.802882   0.205678   3.904 9.48e-05 ***
## PPRuns        0.022711   0.010665   2.129   0.0332 *  
## PPWickets    -0.025834   0.113906  -0.227   0.8206    
## FourCount     0.072760   0.037190   1.956   0.0504 .  
## SixCount      0.042510   0.047148   0.902   0.3673    
## WicketsLost  -0.423578   0.052777  -8.026 1.01e-15 ***
## TotelRuns    -0.003345   0.006855  -0.488   0.6256    
## YearB2018     0.218858   0.316903   0.691   0.4898    
## YearC2017     0.262339   0.350292   0.749   0.4539    
## YearD2016     0.193095   0.351213   0.550   0.5825    
## YearE2015     0.267262   0.372516   0.717   0.4731    
## YearF2014     0.449776   0.324002   1.388   0.1651    
## TeamDC       -0.999901   0.434966  -2.299   0.0215 *  
## TeamGL       -0.859330   0.618370  -1.390   0.1646    
## TeamKKR      -0.544720   0.442733  -1.230   0.2186    
## TeamKXIP     -0.700140   0.436910  -1.602   0.1090    
## TeamMI       -0.329963   0.436539  -0.756   0.4497    
## TeamRCB      -0.882062   0.439100  -2.009   0.0446 *  
## TeamRPS      -0.701445   0.608046  -1.154   0.2487    
## TeamRR       -0.553484   0.473415  -1.169   0.2424    
## TeamSH       12.541240 882.743514   0.014   0.9887    
## TeamSPS      11.577445 882.743529   0.013   0.9895    
## TeamSRH      -0.329923   0.442357  -0.746   0.4558    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 848.41  on 611  degrees of freedom
## Residual deviance: 654.29  on 586  degrees of freedom
## AIC: 706.29
## 
## Number of Fisher Scoring iterations: 13

Mixed Effect Logistic Regression Model

## Loading required package: Matrix
## boundary (singular) fit: see ?isSingular
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## Won ~ TossWon + BatFrist + HomeMatch + PPRuns + PPWickets + FourCount +  
##     SixCount + WicketsLost + TotelRuns + Year + (1 | Team)
##    Data: IPLData
## Control: glmerControl(optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##    695.6    766.2   -331.8    663.6      596 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9607 -0.7157 -0.1722  0.6838  3.2551 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  Team   (Intercept) 0        0       
## Number of obs: 612, groups:  Team, 12
## 
## Fixed effects:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  0.267304   0.819656   0.326 0.744336    
## TossWon1     0.153016   0.306873   0.499 0.618041    
## BatFrist1   -0.315705   0.310701  -1.016 0.309579    
## HomeMatch1   0.747774   0.200822   3.724 0.000196 ***
## PPRuns       0.022951   0.010443   2.198 0.027966 *  
## PPWickets   -0.029972   0.113054  -0.265 0.790924    
## FourCount    0.060284   0.036544   1.650 0.099019 .  
## SixCount     0.025291   0.045808   0.552 0.580878    
## WicketsLost -0.434106   0.052018  -8.345  < 2e-16 ***
## TotelRuns   -0.001389   0.006775  -0.205 0.837603    
## YearB2018    0.219835   0.314966   0.698 0.485199    
## YearC2017    0.139841   0.324555   0.431 0.666562    
## YearD2016    0.036444   0.325688   0.112 0.910904    
## YearE2015    0.255970   0.369062   0.694 0.487952    
## YearF2014    0.393555   0.321133   1.226 0.220380    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of fixed effects could have been required in summary()
## 
## Correlation of Fixed Effects:
##             (Intr) TssWn1 BtFrs1 HmMtc1 PPRuns PPWckt ForCnt SixCnt WcktsL
## TossWon1    -0.353                                                        
## BatFrist1   -0.275  0.763                                                 
## HomeMatch1  -0.019 -0.033 -0.140                                          
## PPRuns      -0.291 -0.031  0.090  0.003                                   
## PPWickets   -0.276 -0.052  0.025 -0.062  0.359                            
## FourCount    0.206 -0.068 -0.038  0.018 -0.164 -0.051                     
## SixCount     0.286 -0.100 -0.060 -0.022 -0.003 -0.063  0.532              
## WicketsLost -0.219 -0.036 -0.089 -0.053 -0.204 -0.362  0.096  0.155       
## TotelRuns   -0.549  0.109 -0.018 -0.031 -0.161  0.063 -0.699 -0.743 -0.024
## YearB2018   -0.106  0.011  0.010  0.052 -0.041 -0.061  0.066 -0.019 -0.048
## YearC2017   -0.071  0.001 -0.004  0.036 -0.085 -0.097  0.080  0.101 -0.025
## YearD2016   -0.177 -0.012 -0.008  0.016  0.031 -0.007  0.090  0.158  0.052
## YearE2015   -0.172 -0.008 -0.005  0.020  0.048  0.000  0.028  0.098 -0.017
## YearF2014   -0.209 -0.020 -0.031  0.150  0.081 -0.009  0.156  0.169  0.019
##             TtlRns YB2018 YC2017 YD2016 YE2015
## TossWon1                                      
## BatFrist1                                     
## HomeMatch1                                    
## PPRuns                                        
## PPWickets                                     
## FourCount                                     
## SixCount                                      
## WicketsLost                                   
## TotelRuns                                     
## YearB2018   -0.056                            
## YearC2017   -0.094  0.492                     
## YearD2016   -0.115  0.469  0.472              
## YearE2015   -0.050  0.414  0.415  0.423       
## YearF2014   -0.149  0.487  0.484  0.502  0.437
## convergence code: 0
## boundary (singular) fit: see ?isSingular

AIC, BIC and Log-likelihood test for the Model1 & Model2

##        df      AIC
## Model1 26 706.2949
## Model2 16 695.5801
##        df      BIC
## Model1 26 821.1299
## Model2 16 766.2479
## 'log Lik.' 654.2949 (df=26)
## 'log Lik.' 663.5801 (df=16)

Logistic regression Assumptions

The logistic regression method assumes that:

Multicollinearity

## Registered S3 methods overwritten by 'car':
##   method                          from
##   influence.merMod                lme4
##   cooks.distance.influence.merMod lme4
##   dfbeta.influence.merMod         lme4
##   dfbetas.influence.merMod        lme4
##                 GVIF Df GVIF^(1/(2*Df))
## TossWon     2.658700  1        1.630552
## BatFrist    2.719590  1        1.649118
## HomeMatch   1.121307  1        1.058918
## PPRuns      1.617735  1        1.271902
## PPWickets   1.397512  1        1.182164
## FourCount   2.534929  1        1.592146
## SixCount    2.746477  1        1.657250
## WicketsLost 1.277906  1        1.130445
## TotelRuns   4.349602  1        2.085570
## Year        1.678021  5        1.053125
## Team        1.750530 11        1.025777
##                 GVIF Df GVIF^(1/(2*Df))
## TossWon     2.615618  1        1.617287
## BatFrist    2.683231  1        1.638057
## HomeMatch   1.087224  1        1.042700
## PPRuns      1.582959  1        1.258157
## PPWickets   1.388087  1        1.178171
## FourCount   2.468067  1        1.571008
## SixCount    2.630357  1        1.621837
## WicketsLost 1.251017  1        1.118488
## TotelRuns   4.353196  1        2.086431
## Year        1.220991  5        1.020167

INFERENCE

Probability of winning for non-HomeMatch

##         1 
## 0.3591366

Summary

##   homeMatch Probability
## 1 "0"       "0.36"     
## 1 "1"       "0.54"

Summary

##   WicketLost  probability
## 1 "mean-sd"   "0.77"     
## 1 "mean"      "0.54"     
## 1 "mean + sd" "0.29"