str(Regression_Batch2_hw)
Classes ‘tbl_df’, ‘tbl’ and 'data.frame':   40 obs. of  5 variables:
 $ Student       : num  1 2 3 4 5 6 7 8 9 10 ...
 $ School_Ranking: num  78 56 23 67 56 78 68 89 37 67 ...
 $ GPA           : num  2.92 3.84 3.04 3.2 3.61 2.99 3.78 3.2 3.42 3.05 ...
 $ Experience    : num  3 9 6 6 7 5 8 5 7 5 ...
 $ Salary        : num  73590 87000 76970 79320 79530 ...
summary(Regression_Batch2_hw)
    Student      School_Ranking       GPA          Experience   
 Min.   : 1.00   Min.   :15.00   Min.   :2.760   Min.   :2.000  
 1st Qu.:10.75   1st Qu.:45.75   1st Qu.:3.033   1st Qu.:5.000  
 Median :20.50   Median :67.00   Median :3.155   Median :6.000  
 Mean   :20.50   Mean   :59.88   Mean   :3.233   Mean   :5.975  
 3rd Qu.:30.25   3rd Qu.:76.50   3rd Qu.:3.350   3rd Qu.:7.000  
 Max.   :40.00   Max.   :89.00   Max.   :3.850   Max.   :9.000  
     Salary     
 Min.   :71040  
 1st Qu.:76913  
 Median :78670  
 Mean   :78721  
 3rd Qu.:80600  
 Max.   :87000  
par(mfrow = c(1,2))
#barplot(Regression_Batch2_hw$GPA,main = "GPA with Salary",col="Red")
#scatter.smooth(Regression_Batch2_hw$Experience, main ="Experience with Salary",col="Blue")
#library(ggplot2)
#Com =table(Regression_Batch2_hw$GPA,Regression_Batch2_hw$Salary)
#Com2 =table(Regression_Batch2_hw$Experience,Regression_Batch2_hw$Salary)
#Com2
#Com
#barplot(Com,inside = TRUE)
#barplot(Com2,inside = TRUE)
c1 = ggplot(data=Regression_Batch2_hw,aes(x=GPA,y=Salary))+geom_bar(stat="identity",fill="Blue")
c1

c2 = ggplot(data=Regression_Batch2_hw,aes(x=Experience,y=Salary))+geom_bar(stat="identity",fill="Blue")
c2

Cor_wk=cor(Regression_Batch2_hw)
Cor_wk
                   Student School_Ranking        GPA Experience      Salary
Student         1.00000000      0.0582101 -0.1262402 0.04395596 -0.00261919
School_Ranking  0.05821010      1.0000000  0.2051312 0.20250931  0.23429048
GPA            -0.12624017      0.2051312  1.0000000 0.65904413  0.73788910
Experience      0.04395596      0.2025093  0.6590441 1.00000000  0.78580114
Salary         -0.00261919      0.2342905  0.7378891 0.78580114  1.00000000
library(corrplot)
corrplot(Cor_wk)

summary(Reg_lm)

Call:
lm(formula = Salary ~ ., data = Regression_Batch2_hw)

Residuals:
    Min      1Q  Median      3Q     Max 
-6359.4  -736.0   306.7  1392.8  4440.1 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)    
(Intercept)    52751.870   4928.281  10.704 1.39e-12 ***
Student            7.064     31.929   0.221 0.826188    
School_Ranking     9.442     18.450   0.512 0.612031    
GPA             5534.006   1785.345   3.100 0.003811 ** 
Experience      1232.513    294.651   4.183 0.000183 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2273 on 35 degrees of freedom
Multiple R-squared:  0.7058,    Adjusted R-squared:  0.6722 
F-statistic: 20.99 on 4 and 35 DF,  p-value: 6.703e-09
summary(P_val)

Call:
lm(formula = Salary ~ GPA + Experience, data = Regression_Batch2_hw)

Residuals:
    Min      1Q  Median      3Q     Max 
-6147.5  -830.1   379.3  1481.8  4767.5 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  53295.4     4566.5  11.671 5.78e-14 ***
GPA           5539.8     1696.5   3.265  0.00236 ** 
Experience    1257.3      282.8   4.445 7.71e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2221 on 37 degrees of freedom
Multiple R-squared:  0.7031,    Adjusted R-squared:  0.687 
F-statistic:  43.8 on 2 and 37 DF,  p-value: 1.756e-10
My_result
       1 
87909.35 

install.packages(ggplot2)

LS0tDQp0aXRsZTogImxvZ2lzdGljcyINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCmBgYHtyfQ0Kc3RyKFJlZ3Jlc3Npb25fQmF0Y2gyX2h3KQ0KYGBgDQpgYGB7cn0NCnN1bW1hcnkoUmVncmVzc2lvbl9CYXRjaDJfaHcpDQpgYGANCg0KDQoNCmBgYHtyfQ0KcGFyKG1mcm93ID0gYygxLDIpKQ0KI2JhcnBsb3QoUmVncmVzc2lvbl9CYXRjaDJfaHckR1BBLG1haW4gPSAiR1BBIHdpdGggU2FsYXJ5Iixjb2w9IlJlZCIpDQojc2NhdHRlci5zbW9vdGgoUmVncmVzc2lvbl9CYXRjaDJfaHckRXhwZXJpZW5jZSwgbWFpbiA9IkV4cGVyaWVuY2Ugd2l0aCBTYWxhcnkiLGNvbD0iQmx1ZSIpDQojbGlicmFyeShnZ3Bsb3QyKQ0KI0NvbSA9dGFibGUoUmVncmVzc2lvbl9CYXRjaDJfaHckR1BBLFJlZ3Jlc3Npb25fQmF0Y2gyX2h3JFNhbGFyeSkNCiNDb20yID10YWJsZShSZWdyZXNzaW9uX0JhdGNoMl9odyRFeHBlcmllbmNlLFJlZ3Jlc3Npb25fQmF0Y2gyX2h3JFNhbGFyeSkNCiNDb20yDQojQ29tDQojYmFycGxvdChDb20saW5zaWRlID0gVFJVRSkNCiNiYXJwbG90KENvbTIsaW5zaWRlID0gVFJVRSkNCmMxID0gZ2dwbG90KGRhdGE9UmVncmVzc2lvbl9CYXRjaDJfaHcsYWVzKHg9R1BBLHk9U2FsYXJ5KSkrZ2VvbV9iYXIoc3RhdD0iaWRlbnRpdHkiLGZpbGw9IkJsdWUiKQ0KYzENCmMyID0gZ2dwbG90KGRhdGE9UmVncmVzc2lvbl9CYXRjaDJfaHcsYWVzKHg9RXhwZXJpZW5jZSx5PVNhbGFyeSkpK2dlb21fYmFyKHN0YXQ9ImlkZW50aXR5IixmaWxsPSJCbHVlIikNCmMyDQoNCmBgYA0KDQpgYGB7cn0NCkNvcl93az1jb3IoUmVncmVzc2lvbl9CYXRjaDJfaHcpDQpDb3Jfd2sNCg0KYGBgDQoNCg0KYGBge3J9DQpsaWJyYXJ5KGNvcnJwbG90KQ0KY29ycnBsb3QoQ29yX3drKQ0KYGBgDQoNCg0KYGBge3J9DQpSZWdfbG0gPSBsbShTYWxhcnl+LixkYXRhID0gUmVncmVzc2lvbl9CYXRjaDJfaHcpDQpSZWdfbG0NCnN1bW1hcnkoUmVnX2xtKQ0KYGBgDQoNCg0KYGBge3J9DQpQX3ZhbD0gbG0oU2FsYXJ5fkdQQStFeHBlcmllbmNlLGRhdGEgPSBSZWdyZXNzaW9uX0JhdGNoMl9odykNClBfdmFsDQpzdW1tYXJ5KFBfdmFsKQ0KYGBgDQoNCmBgYHtyfQ0KUHJlZF92YWwgPSBkYXRhLmZyYW1lKEdQQT01LEV4cGVyaWVuY2U9NS41KQ0KUHJlZF92YWwNCk15X3Jlc3VsdCA9IHByZWRpY3QoUF92YWwsUHJlZF92YWwpDQpNeV9yZXN1bHQNCmBgYA0KDQppbnN0YWxsLnBhY2thZ2VzKGdncGxvdDIpDQoNCg0K