Ans :- We are given that Y denotes the minimum of the Xis. Suppose each independent random variable Xi has k possibilities.
Suppose that each Xi has k possibilities: 1, 2, …, k. Then, the total possible number of assignments for the entire collection of random variables X1, X2, …, Xn is (k)^n . This will form the denominator for our probability distribution function.
The number of ways of getting Y = 1 is k^n - (k - 1)^n / k^n, since k^n represents the total number of options and (k-1)^n represents all of the options where none of the Xi’s are equal to 1.
When X = 1:
P(X=1) = k^n - (k-1)^n / k^n
Similarly When X= 2 & 3:
P(X=2) = (k-2+1)^n - (k-2)^n / k^n
P(X=3) = (k-3+1)^n - (k-3)^n / k^n
Generalization this for (X=m):
P(X=m) = (k-m+1)^n - (k-m)^n * k^n
p_fail <- 1/10
n= 8
p_notfail <- 1-p_fail
prob_geom <- 1-pgeom(n-1, p_fail)
prob_geom
## [1] 0.4304672
#Expected value
expec_val <- 1/p_fail
expec_val
## [1] 10
#Standard Deviation
SD <- sqrt(p_notfail/(p_fail^2))
SD
## [1] 9.486833
n <- 8
lambda <- 1/10
p_expo <- pexp(n, lambda, lower.tail=FALSE)
round(p_expo,2)
## [1] 0.45
#Expected value = 1/lambda
expec_val <- 1/lambda
expec_val
## [1] 10
#SD = 1/??^2
SD <- sqrt(1/lambda^2)
SD
## [1] 10
(n Choose k) p^k * (1-p)^(n???k)
n <- 8
p <- 1/10
q <- (1-p)
k <- 0
p_binomial <- dbinom(k, n, p)
p_binomial
## [1] 0.4304672
#Expected value
exp_val <- n * p
exp_val
## [1] 0.8
# Standard deviation
sd_bino <- sqrt(n*p*q)
sd_bino
## [1] 0.8485281
#Since average number of failures in every 10 years is 1 so average number of failures in 8 years will be:
lambda <- 8/10
k <- 0
ppois(0,lambda = .8 )
## [1] 0.449329
#Expected value
exp_val <- 8/10
exp_val
## [1] 0.8
# Standard deviation
SD <- sqrt(8/10)
SD
## [1] 0.8944272