Create plot theme.
LGCtheme <- theme(strip.background = element_blank(),
panel.grid = element_blank(),
axis.title = element_text(size = 13),
axis.text = element_text(size = 12),
legend.text = element_text(size = 12),
strip.text = element_text(size = 12, color = "black"))
Read in data
RR_long<-read_csv("US_RR_long.csv")
## Parsed with column specification:
## cols(
## data = col_character(),
## year = col_double(),
## fishery_age = col_double(),
## fisheries = col_double(),
## PCAAwestern_age = col_double(),
## PCAAwestern_origin = col_double()
## )
Reorganize data structure
total_fishery<-RR_long %>%
dplyr::select(data,year,fishery_age, fisheries) %>%
mutate(label = "Total Fishery")
western<-RR_long %>%
dplyr::select(data,year,PCAAwestern_age, PCAAwestern_origin) %>%
dplyr::rename("fishery_age" = "PCAAwestern_age", "fisheries" = "PCAAwestern_origin") %>%
mutate(label = "Western Origin")
stacked_long<-bind_rows(total_fishery, western)
stacked_long %>% #dataset
filter(data == "US_RR>177") %>% #select only >177 data
filter(fisheries > 0) %>% #remove 0s
ggplot(aes(x=year, y = fishery_age, size = fisheries, fill = label)) + #create ggplot object
geom_point(pch = 21, color = "black") + LGCtheme + #add point outline and custom theme
labs(x = "Year", y = "Age", size = "Biomass?", fill = "Type?", title = "US Rod and Reel Fishery (>177 cm)") + #add titles
ylim(0,20) + #change y axis
scale_fill_manual(values = c("white","black")) + #set colors
scale_size_continuous(breaks = c(100,300,500,700,900)) + #set size legend breaks
guides(fill = guide_legend(order = 1), size = guide_legend(order = 2)) #order legends
stacked_long %>%
filter(data == "US_RR_115_144") %>%
filter(fisheries > 0) %>%
ggplot(aes(x=year, y = fishery_age, size = fisheries, fill = label)) + geom_point(pch = 21, color = "black") + LGCtheme +
labs(x = "Year", y = "Age", size = "Biomass?", fill = "Type?", title = "US Rod and Reel Fishery (115-144 cm)") +
ylim(0,20) + scale_fill_manual(values = c("white","black")) + scale_size_continuous(breaks = c(1000,2000,3000,4000,5000)) +
guides(fill = guide_legend(order = 1), size = guide_legend(order = 2))
stacked_long %>%
filter(data == "US_RR_66_114") %>%
filter(fisheries > 0) %>%
ggplot(aes(x=year, y = fishery_age, size = fisheries, fill = label)) + geom_point(pch = 21, color = "black") + LGCtheme +
labs(x = "Year", y = "Age", size = "Biomass?", fill = "Type?", title = "US Rod and Reel Fishery (66-114 cm)") +
ylim(0,20) + scale_fill_manual(values = c("white","black")) + scale_size_continuous(breaks = c(1000,2000,3000,4000,5000)) +
guides(fill = guide_legend(order = 1), size = guide_legend(order = 2))
toplabs<-as_labeller(c("US_RR_66_114" = "66-114 cm","US_RR_115_144" = "115-144 cm","US_RR>177" = ">177 cm"))
stacked_long %>%
mutate(data = fct_relevel(data,"US_RR_66_114","US_RR_115_144","US_RR>177")) %>%
filter(fisheries > 0) %>%
ggplot(aes(x=year, y = fishery_age, size = fisheries, fill = label)) + geom_point(pch = 21, color = "black") + LGCtheme +
labs(x = "Year", y = "Age", size = "Biomass?", fill = "Type?") +
ylim(0,20) + scale_fill_manual(values = c("white","black")) + scale_size_continuous(breaks = c(100,500,1000,2000,4000,6000)) +
facet_wrap(~data, labeller = toplabs) + guides(fill = guide_legend(order = 1), size = guide_legend(order = 2))