#This notebook shows how to add attributes to an spatial simple feature

#primero, load the “sf” library #then, let’s read a shapefile of municipalities in Deparment La Guajira

library(sf)
Linking to GEOS 3.6.1, GDAL 2.2.3, PROJ 4.9.3
(mun_gua <- read_sf("otrosmunicipios.shp"))
Simple feature collection with 10 features and 6 fields
geometry type:  MULTIPOLYGON
dimension:      XY
bbox:           xmin: -73.6846 ymin: 10.3812 xmax: -70.99986 ymax: 12.45847
epsg (SRID):    4326
proj4string:    +proj=longlat +datum=WGS84 +no_defs
class(mun_gua)
[1] "sf"         "tbl_df"     "tbl"        "data.frame"

#mirar atibutos de la variable

attributes(mun_gua)
$names
[1] "ISO"       "NAME_0"    "NAME_1"    "NAME_2"    "TYPE_2"    "ENGTYPE_2" "geometry" 

$row.names
 [1]  1  2  3  4  5  6  7  8  9 10

$class
[1] "sf"         "tbl_df"     "tbl"        "data.frame"

$sf_column
[1] "geometry"

$agr
      ISO    NAME_0    NAME_1    NAME_2    TYPE_2 ENGTYPE_2 
     <NA>      <NA>      <NA>      <NA>      <NA>      <NA> 
Levels: constant aggregate identity

#intalar dos librerias adicionales packages(lwgeom,units)

library(units)
udunits system database from C:/Users/usuagro/Documents/R/win-library/3.6/units/share/udunits

#calculo de area llamar sf

(mun_gua$area <- st_area(mun_gua))
Units: [m^2]
 [1]  839478663   75771684  663459547 2277512545 1887005599 5664848099 1070010068 7735542299  481325857
[10]  317239420

#cambio de unidades de area

set_units(mun_gua$area, km^2)
Units: [km^2]
 [1]  839.47866   75.77168  663.45955 2277.51255 1887.00560 5664.84810 1070.01007 7735.54230  481.32586
[10]  317.23942
library(readxl)
#xls files
(censo_agro<-read_excel("ANEXOS_MUNICIPALES.xls"))

#union de datos del censo al objeto sf

class(censo_agro)
[1] "tbl_df"     "tbl"        "data.frame"
library(dplyr)
(gua_data <- censo_agro %>% filter(DEPTO == "La Guajira"))
(gua_data = rename(gua_data, NAME_2 = NOMBRE_MUN))

#Ahora es tiempo de hacer una unión

(gua_censo<-left_join(mun_gua, gua_data))
Joining, by = "NAME_2"
Simple feature collection with 10 features and 14 fields
geometry type:  MULTIPOLYGON
dimension:      XY
bbox:           xmin: -73.6846 ymin: 10.3812 xmax: -70.99986 ymax: 12.45847
epsg (SRID):    4326
proj4string:    +proj=longlat +datum=WGS84 +no_defs

#visualización

suppressPackageStartupMessages(library(mapview))
gua_censo %>% mapview(zcol = "NAME_2", legend=TRUE, col.region =sf.colors)

#Sorting

(gua_clean<-gua_censo %>% arrange(desc(HA_BOSQUE))%>%
select(NAME_2, DCOD, HA_BOSQUE, HA_AGROPECUARIA, HA_NO_AGROPECUARIA, HA_EN_OTROS_USOS))
Simple feature collection with 10 features and 6 fields
geometry type:  MULTIPOLYGON
dimension:      XY
bbox:           xmin: -73.6846 ymin: 10.3812 xmax: -70.99986 ymax: 12.45847
epsg (SRID):    4326
proj4string:    +proj=longlat +datum=WGS84 +no_defs

This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.

plot(cars)

Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Ctrl+Alt+I.

When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Ctrl+Shift+K to preview the HTML file).

The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.

LS0tDQp0aXRsZTogImx1Y2t5Ig0KYXV0aG9yOiBTZWJhc3RpYW4gTGVpdG9uDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KI1RoaXMgbm90ZWJvb2sgc2hvd3MgaG93IHRvIGFkZCBhdHRyaWJ1dGVzIHRvIGFuIHNwYXRpYWwgc2ltcGxlIGZlYXR1cmUNCg0KI3ByaW1lcm8sIGxvYWQgdGhlICJzZiIgbGlicmFyeQ0KI3RoZW4sIGxldCdzIHJlYWQgYSBzaGFwZWZpbGUgb2YgbXVuaWNpcGFsaXRpZXMgaW4gRGVwYXJtZW50IExhIEd1YWppcmENCmBgYHtyfQ0KbGlicmFyeShzZikNCmBgYA0KDQoNCmBgYHtyfQ0KKG11bl9ndWEgPC0gcmVhZF9zZigib3Ryb3NtdW5pY2lwaW9zLnNocCIpKQ0KYGBgDQpgYGB7cn0NCmNsYXNzKG11bl9ndWEpDQpgYGANCiNtaXJhciBhdGlidXRvcyBkZSBsYSB2YXJpYWJsZQ0KYGBge3J9DQphdHRyaWJ1dGVzKG11bl9ndWEpDQpgYGANCiNpbnRhbGFyIGRvcyBsaWJyZXJpYXMgYWRpY2lvbmFsZXMgcGFja2FnZXMobHdnZW9tLHVuaXRzKQ0KYGBge3J9DQppbnN0YWxsLnBhY2thZ2VzKCJsd2dlb20iKQ0KaW5zdGFsbC5wYWNrYWdlcygidW5pdHMiKQ0KbGlicmFyeShsd2dlb20pDQpsaWJyYXJ5KHVuaXRzKQ0KYGBgDQojY2FsY3VsbyBkZSBhcmVhIGxsYW1hciBzZg0KYGBge3J9DQpsaWJyYXJ5KHNmKQ0KKG11bl9ndWEkYXJlYSA8LSBzdF9hcmVhKG11bl9ndWEpKQ0KYGBgDQojY2FtYmlvIGRlIHVuaWRhZGVzIGRlIGFyZWENCmBgYHtyfQ0Kc2V0X3VuaXRzKG11bl9ndWEkYXJlYSwga21eMikNCmBgYA0KDQpgYGB7cn0NCmxpYnJhcnkocmVhZHhsKQ0KI3hscyBmaWxlcw0KKGNlbnNvX2Fncm88LXJlYWRfZXhjZWwoIkFORVhPU19NVU5JQ0lQQUxFUy54bHMiKSkNCmBgYA0KI3VuaW9uIGRlIGRhdG9zIGRlbCBjZW5zbyBhbCBvYmpldG8gc2YNCg0KYGBge3J9DQpjbGFzcyhjZW5zb19hZ3JvKQ0KYGBgDQoNCmBgYHtyfQ0KbGlicmFyeShkcGx5cikNCihndWFfZGF0YSA8LSBjZW5zb19hZ3JvICU+JSBmaWx0ZXIoREVQVE8gPT0gIkxhIEd1YWppcmEiKSkNCmBgYA0KYGBge3J9DQooZ3VhX2RhdGEgPSByZW5hbWUoZ3VhX2RhdGEsIE5BTUVfMiA9IE5PTUJSRV9NVU4pKQ0KYGBgDQojQWhvcmEgZXMgdGllbXBvIGRlIGhhY2VyIHVuYSB1bmnDs24NCmBgYHtyfQ0KKGd1YV9jZW5zbzwtbGVmdF9qb2luKG11bl9ndWEsIGd1YV9kYXRhKSkNCmBgYA0KI3Zpc3VhbGl6YWNpw7NuDQpgYGB7cn0NCnN1cHByZXNzUGFja2FnZVN0YXJ0dXBNZXNzYWdlcyhsaWJyYXJ5KG1hcHZpZXcpKQ0KZ3VhX2NlbnNvICU+JSBtYXB2aWV3KHpjb2wgPSAiTkFNRV8yIiwgbGVnZW5kPVRSVUUsIGNvbC5yZWdpb24gPXNmLmNvbG9ycykNCmBgYA0KI1NvcnRpbmcNCmBgYHtyfQ0KKGd1YV9jbGVhbjwtZ3VhX2NlbnNvICU+JSBhcnJhbmdlKGRlc2MoSEFfQk9TUVVFKSklPiUNCnNlbGVjdChOQU1FXzIsIERDT0QsIEhBX0JPU1FVRSwgSEFfQUdST1BFQ1VBUklBLCBIQV9OT19BR1JPUEVDVUFSSUEsIEhBX0VOX09UUk9TX1VTT1MpKQ0KYGBgDQoNCg0KVGhpcyBpcyBhbiBbUiBNYXJrZG93bl0oaHR0cDovL3JtYXJrZG93bi5yc3R1ZGlvLmNvbSkgTm90ZWJvb2suIFdoZW4geW91IGV4ZWN1dGUgY29kZSB3aXRoaW4gdGhlIG5vdGVib29rLCB0aGUgcmVzdWx0cyBhcHBlYXIgYmVuZWF0aCB0aGUgY29kZS4gDQoNClRyeSBleGVjdXRpbmcgdGhpcyBjaHVuayBieSBjbGlja2luZyB0aGUgKlJ1biogYnV0dG9uIHdpdGhpbiB0aGUgY2h1bmsgb3IgYnkgcGxhY2luZyB5b3VyIGN1cnNvciBpbnNpZGUgaXQgYW5kIHByZXNzaW5nICpDdHJsK1NoaWZ0K0VudGVyKi4gDQoNCmBgYHtyfQ0KcGxvdChjYXJzKQ0KYGBgDQoNCkFkZCBhIG5ldyBjaHVuayBieSBjbGlja2luZyB0aGUgKkluc2VydCBDaHVuayogYnV0dG9uIG9uIHRoZSB0b29sYmFyIG9yIGJ5IHByZXNzaW5nICpDdHJsK0FsdCtJKi4NCg0KV2hlbiB5b3Ugc2F2ZSB0aGUgbm90ZWJvb2ssIGFuIEhUTUwgZmlsZSBjb250YWluaW5nIHRoZSBjb2RlIGFuZCBvdXRwdXQgd2lsbCBiZSBzYXZlZCBhbG9uZ3NpZGUgaXQgKGNsaWNrIHRoZSAqUHJldmlldyogYnV0dG9uIG9yIHByZXNzICpDdHJsK1NoaWZ0K0sqIHRvIHByZXZpZXcgdGhlIEhUTUwgZmlsZSkuDQoNClRoZSBwcmV2aWV3IHNob3dzIHlvdSBhIHJlbmRlcmVkIEhUTUwgY29weSBvZiB0aGUgY29udGVudHMgb2YgdGhlIGVkaXRvci4gQ29uc2VxdWVudGx5LCB1bmxpa2UgKktuaXQqLCAqUHJldmlldyogZG9lcyBub3QgcnVuIGFueSBSIGNvZGUgY2h1bmtzLiBJbnN0ZWFkLCB0aGUgb3V0cHV0IG9mIHRoZSBjaHVuayB3aGVuIGl0IHdhcyBsYXN0IHJ1biBpbiB0aGUgZWRpdG9yIGlzIGRpc3BsYXllZC4NCg==