Q1 dividends Import dividends of Ford Motor Company and General Motors Company since 2015.

## # A tibble: 40 x 3
##    symbol date       dividends
##    <chr>  <date>         <dbl>
##  1 F      2015-01-28      0.15
##  2 F      2015-04-29      0.15
##  3 F      2015-07-29      0.15
##  4 F      2015-10-28      0.15
##  5 F      2016-01-27      0.4 
##  6 F      2016-04-27      0.15
##  7 F      2016-07-26      0.15
##  8 F      2016-10-25      0.15
##  9 F      2017-01-18      0.2 
## 10 F      2017-04-18      0.15
## # … with 30 more rows

Q2 economic data Import the U.S. Industrial Production Index since 1920.

Hint: Find the symbol in FRED.

## # A tibble: 1,196 x 2
##    date       price
##    <date>     <dbl>
##  1 1920-01-01  5.79
##  2 1920-02-01  5.79
##  3 1920-03-01  5.68
##  4 1920-04-01  5.37
##  5 1920-05-01  5.51
##  6 1920-06-01  5.57
##  7 1920-07-01  5.43
##  8 1920-08-01  5.46
##  9 1920-09-01  5.26
## 10 1920-10-01  5.04
## # … with 1,186 more rows

Q3 exchange rates Import exchange rate between the U.S. dollar and the South Korean Won.

## Warning: Oanda only provides historical data for the past 180 days. Symbol:
## USD/KRW
## # A tibble: 180 x 2
##    date       exchange.rate
##    <date>             <dbl>
##  1 2019-04-13         1134.
##  2 2019-04-14         1134.
##  3 2019-04-15         1134.
##  4 2019-04-16         1136.
##  5 2019-04-17         1134.
##  6 2019-04-18         1137.
##  7 2019-04-19         1136.
##  8 2019-04-20         1136.
##  9 2019-04-21         1136.
## 10 2019-04-22         1141.
## # … with 170 more rows

Q4 stock prices Import stock price of Apple, Microsoft and Facebook since 2010.

## Warning: x = 'APPL', get = 'stock.prices': Error in getSymbols.yahoo(Symbols = "APPL", env = <environment>, verbose = FALSE, : Unable to import "APPL".
## APPL download failed after two attempts. Error message:
## HTTP error 404.
##  Removing APPL.
## # A tibble: 3,929 x 8
##    symbol date        open  high   low close   volume adjusted
##    <chr>  <date>     <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
##  1 MSFT   2010-01-04  30.6  31.1  30.6  31.0 38409100     24.4
##  2 MSFT   2010-01-05  30.8  31.1  30.6  31.0 49749600     24.5
##  3 MSFT   2010-01-06  30.9  31.1  30.5  30.8 58182400     24.3
##  4 MSFT   2010-01-07  30.6  30.7  30.2  30.5 50559700     24.0
##  5 MSFT   2010-01-08  30.3  30.9  30.2  30.7 51197400     24.2
##  6 MSFT   2010-01-11  30.7  30.8  30.1  30.3 68754700     23.9
##  7 MSFT   2010-01-12  30.2  30.4  29.9  30.1 65912100     23.7
##  8 MSFT   2010-01-13  30.3  30.5  30.0  30.4 51863500     24.0
##  9 MSFT   2010-01-14  30.3  31.1  30.3  31.0 63228100     24.5
## 10 MSFT   2010-01-15  31.1  31.2  30.7  30.9 79913200     24.4
## # … with 3,919 more rows

Q5 filter Select Apple and Microsoft.

## # A tibble: 2,264 x 8
##    symbol date        open  high   low close   volume adjusted
##    <chr>  <date>     <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
##  1 MSFT   2010-01-04  30.6  31.1  30.6  31.0 38409100     24.4
##  2 MSFT   2010-01-05  30.8  31.1  30.6  31.0 49749600     24.5
##  3 MSFT   2010-01-06  30.9  31.1  30.5  30.8 58182400     24.3
##  4 MSFT   2010-01-07  30.6  30.7  30.2  30.5 50559700     24.0
##  5 MSFT   2010-01-08  30.3  30.9  30.2  30.7 51197400     24.2
##  6 MSFT   2010-01-11  30.7  30.8  30.1  30.3 68754700     23.9
##  7 MSFT   2010-01-12  30.2  30.4  29.9  30.1 65912100     23.7
##  8 MSFT   2010-01-13  30.3  30.5  30.0  30.4 51863500     24.0
##  9 MSFT   2010-01-14  30.3  31.1  30.3  31.0 63228100     24.5
## 10 MSFT   2010-01-15  31.1  31.2  30.7  30.9 79913200     24.4
## # … with 2,254 more rows

Q6 Scatterplot Plot relationships between volume and closing price for Apple, Microsoft and Facebook, using the facet_wrap function. Add the best fit line.

Q7 Describe the relationship between volume and closing price. For which of the three stocks, the trade closing price appears to be relatively more sensitive to the volumn?

The lower the volume the higher thre closing price. Apple looks like the most senstive because the line of best fit is most horizontal.

Q8 Hide the messages and the code, but display results of the code from the webpage.

Q9 Display the title and your name correctly at the top of the webpage.

Q10 Use the correct slug.