## -- Attaching packages ------------------------------------------------------------------------------------ tidyverse 1.2.1 --
## v ggplot2 3.1.0 v purrr 0.3.2
## v tibble 2.1.3 v dplyr 0.8.3
## v tidyr 0.8.2 v stringr 1.4.0
## v readr 1.1.1 v forcats 0.3.0
## -- Conflicts --------------------------------------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## Loading required package: lubridate
##
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
##
## date
## Loading required package: PerformanceAnalytics
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
##
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
##
## first, last
##
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
##
## legend
## Loading required package: quantmod
## Loading required package: TTR
## Version 0.4-0 included new data defaults. See ?getSymbols.
## # A tibble: 6 x 17
## order.date order.id order.line quantity price price.ext customer.id
## <date> <dbl> <int> <dbl> <dbl> <dbl> <dbl>
## 1 2011-01-07 1 1 1 6070 6070 2
## 2 2011-01-07 1 2 1 5970 5970 2
## 3 2011-01-10 2 1 1 2770 2770 10
## 4 2011-01-10 2 2 1 5970 5970 10
## 5 2011-01-10 3 1 1 10660 10660 6
## 6 2011-01-10 3 2 1 3200 3200 6
## # ... with 10 more variables: bikeshop.name <chr>, bikeshop.city <chr>,
## # bikeshop.state <chr>, latitude <dbl>, longitude <dbl>,
## # product.id <dbl>, model <chr>, category.primary <chr>,
## # category.secondary <chr>, frame <chr>
## [1] 15644 17
## order.date order.id order.line quantity
## Min. :2011-01-07 Min. : 1.0 Min. : 1.000 Min. : 1.000
## 1st Qu.:2012-07-10 1st Qu.: 520.0 1st Qu.: 3.000 1st Qu.: 1.000
## Median :2013-08-25 Median : 985.5 Median : 7.000 Median : 1.000
## Mean :2013-08-30 Mean : 998.0 Mean : 8.472 Mean : 8.567
## 3rd Qu.:2014-11-17 3rd Qu.:1490.0 3rd Qu.:13.000 3rd Qu.: 1.000
## Max. :2015-12-25 Max. :2000.0 Max. :30.000 Max. :1000.000
## price price.ext customer.id bikeshop.name
## Min. : 415 Min. : 415 Min. : 1.00 Length:15644
## 1st Qu.: 1840 1st Qu.: 1950 1st Qu.: 8.00 Class :character
## Median : 2700 Median : 3200 Median :10.00 Mode :character
## Mean : 3521 Mean : 30170 Mean :13.46
## 3rd Qu.: 4260 3rd Qu.: 7000 3rd Qu.:19.00
## Max. :12790 Max. :10660000 Max. :30.00
## bikeshop.city bikeshop.state latitude longitude
## Length:15644 Length:15644 Min. :25.76 Min. :-122.68
## Class :character Class :character 1st Qu.:35.47 1st Qu.:-104.99
## Mode :character Mode :character Median :39.11 Median : -94.63
## Mean :37.94 Mean : -95.05
## 3rd Qu.:40.44 3rd Qu.: -83.74
## Max. :47.61 Max. : -71.41
## product.id model category.primary category.secondary
## Min. : 1.00 Length:15644 Length:15644 Length:15644
## 1st Qu.:25.00 Class :character Class :character Class :character
## Median :48.00 Mode :character Mode :character Mode :character
## Mean :49.48
## 3rd Qu.:75.00
## Max. :97.00
## frame
## Length:15644
## Class :character
## Mode :character
##
##
##
## # A tibble: 60 x 3
## # Groups: year [5]
## year month total.qty
## <dbl> <ord> <dbl>
## 1 2011 Jan 440
## 2 2011 Feb 2017
## 3 2011 Mar 1584
## 4 2011 Apr 4478
## 5 2011 May 4112
## 6 2011 Jun 4251
## 7 2011 Jul 1550
## 8 2011 Aug 1470
## 9 2011 Sep 975
## 10 2011 Oct 697
## # ... with 50 more rows

## # A tibble: 538 x 3
## # Groups: category.secondary [9]
## category.secondary order.month total.qty
## <chr> <date> <dbl>
## 1 Cross Country Race 2011-01-01 122
## 2 Cross Country Race 2011-02-01 489
## 3 Cross Country Race 2011-03-01 505
## 4 Cross Country Race 2011-04-01 343
## 5 Cross Country Race 2011-05-01 263
## 6 Cross Country Race 2011-06-01 735
## 7 Cross Country Race 2011-07-01 183
## 8 Cross Country Race 2011-08-01 66
## 9 Cross Country Race 2011-09-01 97
## 10 Cross Country Race 2011-10-01 189
## # ... with 528 more rows
## # A tibble: 9 x 2
## category.secondary data
## <chr> <list>
## 1 Cross Country Race <tibble [60 x 2]>
## 2 Cyclocross <tibble [60 x 2]>
## 3 Elite Road <tibble [60 x 2]>
## 4 Endurance Road <tibble [60 x 2]>
## 5 Fat Bike <tibble [58 x 2]>
## 6 Over Mountain <tibble [60 x 2]>
## 7 Sport <tibble [60 x 2]>
## 8 Trail <tibble [60 x 2]>
## 9 Triathalon <tibble [60 x 2]>
## # A tibble: 9 x 3
## category.secondary data data.ts
## <chr> <list> <list>
## 1 Cross Country Race <tibble [60 x 2]> <S3: ts>
## 2 Cyclocross <tibble [60 x 2]> <S3: ts>
## 3 Elite Road <tibble [60 x 2]> <S3: ts>
## 4 Endurance Road <tibble [60 x 2]> <S3: ts>
## 5 Fat Bike <tibble [58 x 2]> <S3: ts>
## 6 Over Mountain <tibble [60 x 2]> <S3: ts>
## 7 Sport <tibble [60 x 2]> <S3: ts>
## 8 Trail <tibble [60 x 2]> <S3: ts>
## 9 Triathalon <tibble [60 x 2]> <S3: ts>
## # A tibble: 9 x 4
## category.secondary data data.ts fit.ets
## <chr> <list> <list> <list>
## 1 Cross Country Race <tibble [60 x 2]> <S3: ts> <S3: ets>
## 2 Cyclocross <tibble [60 x 2]> <S3: ts> <S3: ets>
## 3 Elite Road <tibble [60 x 2]> <S3: ts> <S3: ets>
## 4 Endurance Road <tibble [60 x 2]> <S3: ts> <S3: ets>
## 5 Fat Bike <tibble [58 x 2]> <S3: ts> <S3: ets>
## 6 Over Mountain <tibble [60 x 2]> <S3: ts> <S3: ets>
## 7 Sport <tibble [60 x 2]> <S3: ts> <S3: ets>
## 8 Trail <tibble [60 x 2]> <S3: ts> <S3: ets>
## 9 Triathalon <tibble [60 x 2]> <S3: ts> <S3: ets>
## # A tibble: 16 x 10
## term `Cross Country ~ Cyclocross `Elite Road` `Endurance Road`
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 alpha 0.0398 0.000110 0.0651 0.107
## 2 b NA NA NA NA
## 3 beta NA NA NA NA
## 4 gamma 0.000101 0.00256 0.000100 0.000899
## 5 l 321. 210. 490. 394.
## 6 s0 0.503 0.0788 0.871 0.312
## 7 s1 1.10 1.32 0.556 1.47
## 8 s10 0.643 0.212 0.266 0.730
## 9 s2 0.375 0.0969 0.617 1.13
## 10 s3 1.12 0.349 1.52 0.554
## 11 s4 0.630 1.34 0.663 1.06
## 12 s5 2.06 2.06 0.545 1.99
## 13 s6 0.873 2.01 1.69 1.14
## 14 s7 1.64 1.38 1.91 0.836
## 15 s8 0.487 2.29 1.27 0.694
## 16 s9 1.41 0.754 1.86 1.83
## # ... with 5 more variables: `Fat Bike` <dbl>, `Over Mountain` <dbl>,
## # Sport <dbl>, Trail <dbl>, Triathalon <dbl>
## # A tibble: 9 x 16
## category.second~ data data.ts fit.ets model.desc sigma logLik AIC
## <chr> <lis> <list> <list> <chr> <dbl> <dbl> <dbl>
## 1 Cross Country R~ <tib~ <S3: t~ <S3: e~ ETS(M,N,M) 1.06 -464. 957.
## 2 Cyclocross <tib~ <S3: t~ <S3: e~ ETS(M,N,M) 1.12 -409. 848.
## 3 Elite Road <tib~ <S3: t~ <S3: e~ ETS(M,N,M) 0.895 -471. 972.
## 4 Endurance Road <tib~ <S3: t~ <S3: e~ ETS(M,N,M) 0.759 -439. 909.
## 5 Fat Bike <tib~ <S3: t~ <S3: e~ ETS(M,N,M) 2.73 -343. 715.
## 6 Over Mountain <tib~ <S3: t~ <S3: e~ ETS(M,N,M) 0.910 -423. 877.
## 7 Sport <tib~ <S3: t~ <S3: e~ ETS(M,N,M) 0.872 -427. 884.
## 8 Trail <tib~ <S3: t~ <S3: e~ ETS(M,A,M) 0.741 -411. 855.
## 9 Triathalon <tib~ <S3: t~ <S3: e~ ETS(M,N,M) 1.52 -410. 850.
## # ... with 8 more variables: BIC <dbl>, ME <dbl>, RMSE <dbl>, MAE <dbl>,
## # MPE <dbl>, MAPE <dbl>, MASE <dbl>, ACF1 <dbl>
## # A tibble: 538 x 5
## category.secondary date .actual .fitted .resid
## <chr> <date> <dbl> <dbl> <dbl>
## 1 Cross Country Race 2011-01-01 122 373. -0.673
## 2 Cross Country Race 2011-02-01 489 201. 1.43
## 3 Cross Country Race 2011-03-01 505 465. 0.0864
## 4 Cross Country Race 2011-04-01 343 161. 1.12
## 5 Cross Country Race 2011-05-01 263 567. -0.537
## 6 Cross Country Race 2011-06-01 735 296. 1.48
## 7 Cross Country Race 2011-07-01 183 741. -0.753
## 8 Cross Country Race 2011-08-01 66 220. -0.700
## 9 Cross Country Race 2011-09-01 97 381. -0.745
## 10 Cross Country Race 2011-10-01 189 123. 0.534
## # ... with 528 more rows
