FunModel 001

## Loading required package: Hmisc
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Loading required package: ggplot2
## 
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
## 
##     format.pval, units
## funModeling v.1.9.3 :)
## Examples and tutorials at livebook.datascienceheroes.com
##  / Now in Spanish: librovivodecienciadedatos.ai
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:Hmisc':
## 
##     src, summarize
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
## [1] 303  16
##   age gender chest_pain resting_blood_pressure serum_cholestoral
## 1  63   male          1                    145               233
## 2  67   male          4                    160               286
## 3  67   male          4                    120               229
## 4  37   male          3                    130               250
## 5  41 female          2                    130               204
## 6  56   male          2                    120               236
##   fasting_blood_sugar resting_electro max_heart_rate exer_angina oldpeak
## 1                   1               2            150           0     2.3
## 2                   0               2            108           1     1.5
## 3                   0               2            129           1     2.6
## 4                   0               0            187           0     3.5
## 5                   0               2            172           0     1.4
## 6                   0               0            178           0     0.8
##   slope num_vessels_flour thal heart_disease_severity exter_angina
## 1     3                 0    6                      0            0
## 2     2                 3    3                      2            1
## 3     2                 2    7                      1            1
## 4     3                 0    3                      0            0
## 5     1                 0    3                      0            0
## 6     1                 0    3                      0            0
##   has_heart_disease
## 1                no
## 2               yes
## 3               yes
## 4                no
## 5                no
## 6                no
##                  variable q_zeros p_zeros q_na p_na q_inf p_inf    type
## 1                     age       0    0.00    0 0.00     0     0 integer
## 2                  gender       0    0.00    0 0.00     0     0  factor
## 3              chest_pain       0    0.00    0 0.00     0     0  factor
## 4  resting_blood_pressure       0    0.00    0 0.00     0     0 integer
## 5       serum_cholestoral       0    0.00    0 0.00     0     0 integer
## 6     fasting_blood_sugar     258   85.15    0 0.00     0     0  factor
## 7         resting_electro     151   49.83    0 0.00     0     0  factor
## 8          max_heart_rate       0    0.00    0 0.00     0     0 integer
## 9             exer_angina     204   67.33    0 0.00     0     0 integer
## 10                oldpeak      99   32.67    0 0.00     0     0 numeric
## 11                  slope       0    0.00    0 0.00     0     0 integer
## 12      num_vessels_flour     176   58.09    4 1.32     0     0 integer
## 13                   thal       0    0.00    2 0.66     0     0  factor
## 14 heart_disease_severity     164   54.13    0 0.00     0     0 integer
## 15           exter_angina     204   67.33    0 0.00     0     0  factor
## 16      has_heart_disease       0    0.00    0 0.00     0     0  factor
##    unique
## 1      41
## 2       2
## 3       4
## 4      50
## 5     152
## 6       2
## 7       3
## 8      91
## 9       2
## 10     40
## 11      3
## 12      4
## 13      3
## 14      5
## 15      2
## 16      2
##                  variable q_zeros   p_zeros q_na       p_na q_inf p_inf
## 1                     age       0 0.0000000    0 0.00000000     0     0
## 2                  gender       0 0.0000000    0 0.00000000     0     0
## 3              chest_pain       0 0.0000000    0 0.00000000     0     0
## 4  resting_blood_pressure       0 0.0000000    0 0.00000000     0     0
## 5       serum_cholestoral       0 0.0000000    0 0.00000000     0     0
## 6     fasting_blood_sugar     258 0.8514851    0 0.00000000     0     0
## 7         resting_electro     151 0.4983498    0 0.00000000     0     0
## 8          max_heart_rate       0 0.0000000    0 0.00000000     0     0
## 9             exer_angina     204 0.6732673    0 0.00000000     0     0
## 10                oldpeak      99 0.3267327    0 0.00000000     0     0
## 11                  slope       0 0.0000000    0 0.00000000     0     0
## 12      num_vessels_flour     176 0.5808581    4 0.01320132     0     0
## 13                   thal       0 0.0000000    2 0.00660066     0     0
## 14 heart_disease_severity     164 0.5412541    0 0.00000000     0     0
## 15           exter_angina     204 0.6732673    0 0.00000000     0     0
## 16      has_heart_disease       0 0.0000000    0 0.00000000     0     0
##       type unique
## 1  integer     41
## 2   factor      2
## 3   factor      4
## 4  integer     50
## 5  integer    152
## 6   factor      2
## 7   factor      3
## 8  integer     91
## 9  integer      2
## 10 numeric     40
## 11 integer      3
## 12 integer      4
## 13  factor      3
## 14 integer      5
## 15  factor      2
## 16  factor      2
## 
## ( ) {Numerical with NA} num_vessels_flour
## ( ) {Categorical with NA} thal
## $vars_num_with_NA
##            variable q_na       p_na
## 1 num_vessels_flour    4 0.01320132
## 
## $vars_cat_with_NA
##   variable q_na       p_na
## 1     thal    2 0.00660066
## 
## $vars_cat_high_card
## [1] variable unique  
## <0 rows> (or 0-length row.names)
## 
## $MAX_UNIQUE
## [1] 35
## 
## $vars_one_value
## character(0)
## 
## $vars_cat
## [1] "gender"              "chest_pain"          "fasting_blood_sugar"
## [4] "resting_electro"     "thal"                "exter_angina"       
## [7] "has_heart_disease"  
## 
## $vars_num
## [1] "age"                    "resting_blood_pressure"
## [3] "serum_cholestoral"      "max_heart_rate"        
## [5] "exer_angina"            "oldpeak"               
## [7] "slope"                  "num_vessels_flour"     
## [9] "heart_disease_severity"
## 
## $vars_char
## character(0)
## 
## $vars_factor
## [1] "gender"              "chest_pain"          "fasting_blood_sugar"
## [4] "resting_electro"     "thal"                "exter_angina"       
## [7] "has_heart_disease"  
## 
## $vars_other
## character(0)

##                 variable        mean    std_dev variation_coef   p_01
## 1                    age  54.4389439  9.0386624      0.1660330  35.00
## 2 resting_blood_pressure 131.6897690 17.5997477      0.1336455 100.00
## 3      serum_cholestoral 246.6930693 51.7769175      0.2098840 149.00
## 4         max_heart_rate 149.6072607 22.8750033      0.1529004  95.02
## 5            exer_angina   0.3267327  0.4697945      1.4378558   0.00
## 6                oldpeak   1.0396040  1.1610750      1.1168436   0.00
## 7                  slope   1.6006601  0.6162261      0.3849825   1.00
## 8      num_vessels_flour   0.6722408  0.9374383      1.3944978   0.00
## 9 heart_disease_severity   0.9372937  1.2285357      1.3107265   0.00
##    p_05  p_25  p_50  p_75  p_95   p_99   skewness kurtosis  iqr
## 1  40.0  48.0  56.0  61.0  68.0  71.00 -0.2080241 2.465477 13.0
## 2 108.0 120.0 130.0 140.0 160.0 180.00  0.7025346 3.845881 20.0
## 3 175.1 211.0 241.0 275.0 326.9 406.74  1.1298741 7.398208 64.0
## 4 108.1 133.5 153.0 166.0 181.9 191.96 -0.5347844 2.927602 32.5
## 5   0.0   0.0   0.0   1.0   1.0   1.00  0.7388506 1.545900  1.0
## 6   0.0   0.0   0.8   1.6   3.4   4.20  1.2634255 4.530193  1.6
## 7   1.0   1.0   2.0   2.0   3.0   3.00  0.5057957 2.363050  1.0
## 8   0.0   0.0   0.0   1.0   3.0   3.00  1.1833771 3.234941  1.0
## 9   0.0   0.0   0.0   2.0   3.0   4.00  1.0532483 2.843788  2.0
##          range_98       range_80
## 1        [35, 71]       [42, 66]
## 2      [100, 180]     [110, 152]
## 3   [149, 406.74] [188.8, 308.8]
## 4 [95.02, 191.96]   [116, 176.6]
## 5          [0, 1]         [0, 1]
## 6        [0, 4.2]       [0, 2.8]
## 7          [1, 3]         [1, 2]
## 8          [0, 3]         [0, 2]
## 9          [0, 4]         [0, 3]

##   chest_pain frequency percentage cumulative_perc
## 1          4       144      47.52           47.52
## 2          3        86      28.38           75.90
## 3          2        50      16.50           92.40
## 4          1        23       7.59          100.00

##   thal frequency percentage cumulative_perc
## 1    3       166      54.79           54.79
## 2    7       117      38.61           93.40
## 3    6        18       5.94           99.34
## 4 <NA>         2       0.66          100.00
## [1] "Variables processed: chest_pain, thal"
##                 Variable has_heart_disease
## 1      has_heart_disease              1.00
## 2 heart_disease_severity              0.83
## 3      num_vessels_flour              0.46
## 4                oldpeak              0.42
## 5                  slope              0.34
## 6                    age              0.23
## 7 resting_blood_pressure              0.15
## 8      serum_cholestoral              0.08
## 9         max_heart_rate             -0.42
##                       var    en    mi           ig           gr
## 1  heart_disease_severity 1.846 0.995 0.9950837595 0.5390655068
## 2                    thal 2.032 0.209 0.2094550580 0.1680456709
## 3             exer_angina 1.767 0.139 0.1391389302 0.1526393841
## 4            exter_angina 1.767 0.139 0.1391389302 0.1526393841
## 5              chest_pain 2.527 0.205 0.2050188327 0.1180286190
## 6       num_vessels_flour 2.381 0.182 0.1815217813 0.1157736478
## 7                   slope 2.177 0.112 0.1124219069 0.0868799615
## 8       serum_cholestoral 7.481 0.561 0.5605556771 0.0795557228
## 9                  gender 1.842 0.057 0.0572537665 0.0632970555
## 10                oldpeak 4.874 0.249 0.2491668741 0.0603576874
## 11         max_heart_rate 6.832 0.334 0.3336174096 0.0540697329
## 12 resting_blood_pressure 5.567 0.143 0.1425548155 0.0302394591
## 13                    age 5.928 0.137 0.1371752885 0.0270548944
## 14        resting_electro 2.059 0.024 0.0241482908 0.0221938072
## 15    fasting_blood_sugar 1.601 0.000 0.0004593775 0.0007579095
## Plotting transformed variable 'age' with 'equal_freq', (too many values). Disable with 'auto_binning=FALSE'
## Plotting transformed variable 'oldpeak' with 'equal_freq', (too many values). Disable with 'auto_binning=FALSE'

##          country mean_target sum_target perc_target q_rows perc_rows
## 1       Malaysia       1.000          1       0.012      1     0.001
## 2         Mexico       0.667          2       0.024      3     0.003
## 3       Portugal       0.200          1       0.012      5     0.005
## 4 United Kingdom       0.178          8       0.096     45     0.049
## 5        Uruguay       0.175         11       0.133     63     0.069
## 6         Israel       0.167          1       0.012      6     0.007
## Variables processed: max_heart_rate, oldpeak
## Variables processed: max_heart_rate, oldpeak
## Variables processed: Sepal.Length, Sepal.Width, Petal.Length, Petal.Width
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1  [ 5.1, 5.7) [ 3.5, Inf]  [-Inf, 1.6) [-Inf, 0.3)  setosa
## 2  [-Inf, 5.1) [ 2.8, 3.1)  [-Inf, 1.6) [-Inf, 0.3)  setosa
## 3  [-Inf, 5.1) [ 3.2, 3.5)  [-Inf, 1.6) [-Inf, 0.3)  setosa
## 4  [-Inf, 5.1) [ 3.1, 3.2)  [-Inf, 1.6) [-Inf, 0.3)  setosa
## 5  [-Inf, 5.1) [ 3.5, Inf]  [-Inf, 1.6) [-Inf, 0.3)  setosa
## 6  [ 5.1, 5.7) [ 3.5, Inf]  [ 1.6, 4.0) [ 0.3, 1.2)  setosa
## new_age 
##        n  missing distinct 
##      303        0        5 
##                                                   
## Value      [29,46) [46,54) [54,59) [59,63) [63,77]
## Frequency       63      64      71      45      60
## Proportion   0.208   0.211   0.234   0.149   0.198

##    Population   Gain Lift Score.Point
## 1          10  20.86 2.09   0.8185793
## 2          20  35.97 1.80   0.6967124
## 3          30  48.92 1.63   0.5657817
## 4          40  61.15 1.53   0.4901940
## 5          50  69.06 1.38   0.4033640
## 6          60  78.42 1.31   0.3344170
## 7          70  87.77 1.25   0.2939878
## 8          80  92.09 1.15   0.2473671
## 9          90  96.40 1.07   0.1980453
## 10        100 100.00 1.00   0.1195511

2019-10-09