importing the data

data=read.table("food.txt",head=TRUE)
str(data)
## 'data.frame':    144 obs. of  5 variables:
##  $ nema  : Factor w/ 2 levels "A","B": 1 1 1 1 1 1 1 1 1 1 ...
##  $ fungus: int  1 1 1 1 1 1 2 2 2 2 ...
##  $ exp   : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ rep   : int  1 2 3 4 5 6 1 2 3 4 ...
##  $ final : num  133 264 302 14 368 ...
data$fungus = as.factor(data$fungus)
data$exp = as.factor(data$exp)
data$rep = as.factor(data$rep)
attach(data) 
data
##     nema fungus exp rep        final
## 1      A      1   1   1  133.0000000
## 2      A      1   1   2  264.0000000
## 3      A      1   1   3  302.0000000
## 4      A      1   1   4   14.0000000
## 5      A      1   1   5  368.0000000
## 6      A      1   1   6  193.0000000
## 7      A      2   1   1    0.9259259
## 8      A      2   1   2    5.5555556
## 9      A      2   1   3   30.6666667
## 10     A      2   1   4    0.0000000
## 11     A      2   1   5   36.1111111
## 12     A      2   1   6   14.1666667
## 13     A      3   1   1  831.0000000
## 14     A      3   1   2 1111.0000000
## 15     A      3   1   3  616.0000000
## 16     A      3   1   4 3837.0000000
## 17     A      3   1   5 2240.0000000
## 18     A      3   1   6  412.6666667
## 19     A      4   1   1 1227.0000000
## 20     A      4   1   2 1822.2222220
## 21     A      4   1   3 2442.5925930
## 22     A      4   1   4  956.0000000
## 23     A      4   1   5  914.6666667
## 24     A      4   1   6 1078.6666670
## 25     A      5   1   1    5.0000000
## 26     A      5   1   2   46.0000000
## 27     A      5   1   3    3.0000000
## 28     A      5   1   4    0.9259259
## 29     A      5   1   5    8.0000000
## 30     A      5   1   6   32.6666667
## 31     A      6   1   1  820.5000000
## 32     A      6   1   2 1570.5000000
## 33     A      6   1   3  691.5000000
## 34     A      6   1   4  923.0000000
## 35     A      6   1   5  712.0000000
## 36     A      6   1   6  897.0000000
## 37     B      1   1   1  879.0849673
## 38     B      1   1   2 1452.6666670
## 39     B      1   1   3 2506.9444440
## 40     B      1   1   4 1850.0000000
## 41     B      1   1   5  311.7647059
## 42     B      1   1   6 1514.6666670
## 43     B      2   1   1 1070.6666670
## 44     B      2   1   2 1245.3333330
## 45     B      2   1   3 1388.6666670
## 46     B      2   1   4  636.0000000
## 47     B      2   1   5  575.3333333
## 48     B      2   1   6 1140.5228760
## 49     B      3   1   1  336.6666667
## 50     B      3   1   2  474.6666667
## 51     B      3   1   3 1308.4848480
## 52     B      3   1   4 1177.6666670
## 53     B      3   1   5 1735.6666670
## 54     B      3   1   6 1684.6666670
## 55     B      4   1   1  451.6666667
## 56     B      4   1   2  401.3333333
## 57     B      4   1   3 2022.6666670
## 58     B      4   1   4 1079.3333330
## 59     B      4   1   5 1075.3333330
## 60     B      4   1   6 1535.3333330
## 61     B      5   1   1   15.3333333
## 62     B      5   1   2   14.0000000
## 63     B      5   1   3   20.0000000
## 64     B      5   1   4    6.6666667
## 65     B      5   1   5   35.3333333
## 66     B      5   1   6   52.0000000
## 67     B      6   1   1  400.3333333
## 68     B      6   1   2           NA
## 69     B      6   1   3 1151.6666670
## 70     B      6   1   4 1474.3333330
## 71     B      6   1   5 1986.6666670
## 72     B      6   1   6 1094.3333330
## 73     A      1   2   1   60.3448276
## 74     A      1   2   2   10.8333333
## 75     A      1   2   3   59.1666667
## 76     A      1   2   4  158.3333333
## 77     A      1   2   5  180.4687500
## 78     A      1   2   6   80.0000000
## 79     A      2   2   1    0.0000000
## 80     A      2   2   2    1.7241379
## 81     A      2   2   3   14.6551724
## 82     A      2   2   4    0.0000000
## 83     A      2   2   5    6.0344828
## 84     A      2   2   6    0.0000000
## 85     A      3   2   1  806.0000000
## 86     A      3   2   2  587.0000000
## 87     A      3   2   3  326.5000000
## 88     A      3   2   4  430.5000000
## 89     A      3   2   5  897.0000000
## 90     A      3   2   6 1802.0000000
## 91     A      4   2   1 1085.0000000
## 92     A      4   2   2 2511.1111110
## 93     A      4   2   3  349.0740741
## 94     A      4   2   4  903.0000000
## 95     A      4   2   5  308.6206897
## 96     A      4   2   6 2402.6666670
## 97     A      5   2   1    9.0000000
## 98     A      5   2   2    9.0000000
## 99     A      5   2   3   26.0000000
## 100    A      5   2   4   28.0000000
## 101    A      5   2   5  120.0000000
## 102    A      5   2   6           NA
## 103    A      6   2   1  854.0000000
## 104    A      6   2   2  154.5000000
## 105    A      6   2   3  882.5000000
## 106    A      6   2   4  600.0000000
## 107    A      6   2   5  914.1666667
## 108    A      6   2   6 1720.8333330
## 109    B      1   2   1  743.7908497
## 110    B      1   2   2  166.0000000
## 111    B      1   2   3 1606.0000000
## 112    B      1   2   4 1244.0000000
## 113    B      1   2   5  592.6666667
## 114    B      1   2   6 2080.0000000
## 115    B      2   2   1   57.3333333
## 116    B      2   2   2  283.0065359
## 117    B      2   2   3 3450.0000000
## 118    B      2   2   4 2534.0000000
## 119    B      2   2   5 1628.6666670
## 120    B      2   2   6 1078.6666670
## 121    B      3   2   1  218.0000000
## 122    B      3   2   2  575.6666667
## 123    B      3   2   3  798.6666667
## 124    B      3   2   4  400.3333333
## 125    B      3   2   5 1320.6666670
## 126    B      3   2   6 1419.3333330
## 127    B      4   2   1  732.2404372
## 128    B      4   2   2  576.0000000
## 129    B      4   2   3 1672.0000000
## 130    B      4   2   4 1546.6666670
## 131    B      4   2   5  675.3333333
## 132    B      4   2   6  859.3333333
## 133    B      5   2   1   30.0000000
## 134    B      5   2   2   64.0000000
## 135    B      5   2   3   48.6666667
## 136    B      5   2   4   48.0000000
## 137    B      5   2   5           NA
## 138    B      5   2   6           NA
## 139    B      6   2   1  880.0000000
## 140    B      6   2   2  460.6666667
## 141    B      6   2   3 1217.6666670
## 142    B      6   2   4 2590.3333330
## 143    B      6   2   5  708.6666667
## 144    B      6   2   6           NA

Boxplot for nema and fungus

boxplot(data$final~data$fungus)

boxplot(data$final~data$nema)

data$logfinal=log(data$final+1)

Chencking the interaction bewteen experiment 1 and 2

interaction_exp<- aov(logfinal~exp+nema+fungus+nema*fungus, data=data) 
summary(interaction_exp)
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## exp           1   0.39    0.39    0.49    0.485    
## nema          1  68.07   68.07   86.36 5.74e-16 ***
## fungus        5 298.33   59.67   75.70  < 2e-16 ***
## nema:fungus   5 132.95   26.59   33.74  < 2e-16 ***
## Residuals   126  99.31    0.79                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 5 observations deleted due to missingness
plot(interaction_exp)

data=data[-c(101,28,115),]

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

interaction_exp<- aov(logfinal~exp+nema+fungus+nema*fungus, data=data) 
summary(interaction_exp)
##              Df Sum Sq Mean Sq F value Pr(>F)    
## exp           1   0.70    0.70   1.038   0.31    
## nema          1  63.70   63.70  95.044 <2e-16 ***
## fungus        5 285.05   57.01  85.067 <2e-16 ***
## nema:fungus   5 139.43   27.89  41.610 <2e-16 ***
## Residuals   123  82.43    0.67                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 5 observations deleted due to missingness
plot(interaction_exp)

data=data[-c(11,74,4),]
library(lsmeans)
## Warning: package 'lsmeans' was built under R version 3.4.4
## Loading required package: emmeans
## The 'lsmeans' package is now basically a front end for 'emmeans'.
## Users are encouraged to switch the rest of the way.
## See help('transition') for more information, including how to
## convert old 'lsmeans' objects and scripts to work with 'emmeans'.
lsmeans(interaction_exp, ~fungus)
## NOTE: Results may be misleading due to involvement in interactions
##  fungus lsmean    SE  df lower.CL upper.CL
##  1        5.76 0.167 123     5.43     6.09
##  2        4.26 0.171 123     3.92     4.59
##  3        6.72 0.167 123     6.39     7.05
##  4        6.92 0.167 123     6.59     7.25
##  5        2.99 0.188 123     2.62     3.37
##  6        6.80 0.175 123     6.46     7.15
## 
## Results are averaged over the levels of: exp, nema 
## Confidence level used: 0.95
lsmeans(interaction_exp, pairwise~fungus, adjust='Tukey')
## NOTE: Results may be misleading due to involvement in interactions
## $lsmeans
##  fungus lsmean    SE  df lower.CL upper.CL
##  1        5.76 0.167 123     5.43     6.09
##  2        4.26 0.171 123     3.92     4.59
##  3        6.72 0.167 123     6.39     7.05
##  4        6.92 0.167 123     6.59     7.25
##  5        2.99 0.188 123     2.62     3.37
##  6        6.80 0.175 123     6.46     7.15
## 
## Results are averaged over the levels of: exp, nema 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast estimate    SE  df t.ratio p.value
##  1 - 2      1.5021 0.239 123   6.284 <.0001 
##  1 - 3     -0.9667 0.236 123  -4.090 0.0011 
##  1 - 4     -1.1642 0.236 123  -4.926 <.0001 
##  1 - 5      2.7642 0.252 123  10.977 <.0001 
##  1 - 6     -1.0475 0.242 123  -4.326 0.0004 
##  2 - 3     -2.4687 0.239 123 -10.329 <.0001 
##  2 - 4     -2.6663 0.239 123 -11.155 <.0001 
##  2 - 5      1.2621 0.254 123   4.965 <.0001 
##  2 - 6     -2.5496 0.245 123 -10.415 <.0001 
##  3 - 4     -0.1976 0.236 123  -0.836 0.9602 
##  3 - 5      3.7309 0.252 123  14.815 <.0001 
##  3 - 6     -0.0808 0.242 123  -0.334 0.9994 
##  4 - 5      3.9285 0.252 123  15.600 <.0001 
##  4 - 6      0.1168 0.242 123   0.482 0.9967 
##  5 - 6     -3.8117 0.257 123 -14.814 <.0001 
## 
## Results are averaged over the levels of: exp, nema 
## P value adjustment: tukey method for comparing a family of 6 estimates
library(agricolae)
## Warning: package 'agricolae' was built under R version 3.4.4
(HSD.test(interaction_exp,"fungus"))
## $statistics
##   MSerror  Df     Mean       CV
##   0.67019 123 5.646431 14.49856
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey fungus   6         4.094364  0.05
## 
## $means
##   logfinal       std  r      Min      Max      Q25      Q50      Q75
## 1 5.757406 1.5042929 24 2.470920 7.827219 5.027709 5.729592 7.165629
## 2 4.140739 3.0233541 23 0.000000 8.146419 1.441232 3.613916 7.012263
## 3 6.724075 0.7055343 24 5.389072 8.252707 6.140355 6.708578 7.204648
## 4 6.921650 0.6080119 24 5.735348 7.828879 6.577277 6.982862 7.363971
## 5 3.029550 0.8303066 19 1.386294 4.174387 2.302585 3.295837 3.721442
## 6 6.792773 0.5955118 22 5.046646 7.859928 6.565967 6.792031 7.091593
## 
## $comparison
## NULL
## 
## $groups
##   logfinal groups
## 4 6.921650      a
## 6 6.792773      a
## 3 6.724075      a
## 1 5.757406      b
## 2 4.140739      c
## 5 3.029550      d
## 
## attr(,"class")
## [1] "group"
library(agricolae)
(HSD.test(interaction_exp,"nema"))
## $statistics
##   MSerror  Df     Mean       CV
##   0.67019 123 5.646431 14.49856
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey   nema   2         2.799349  0.05
## 
## $means
##   logfinal      std  r      Min      Max      Q25      Q50      Q75
## A 4.971061 2.344447 69 0.000000 8.252707 3.295837 5.791488 6.806829
## B 6.341961 1.423132 67 2.036882 8.146419 5.996037 6.781058 7.289242
## 
## $comparison
## NULL
## 
## $groups
##   logfinal groups
## B 6.341961      a
## A 4.971061      b
## 
## attr(,"class")
## [1] "group"
library(agricolae)
(HSD.test(interaction_exp,"exp"))
## $statistics
##   MSerror  Df     Mean       CV
##   0.67019 123 5.646431 14.49856
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey    exp   2         2.799349  0.05
## 
## $means
##   logfinal      std  r Min      Max      Q25      Q50      Q75
## 1 5.715874 2.046272 70   0 8.252707 4.202179 6.640307 7.124256
## 2 5.572780 2.081780 66   0 8.146419 4.229403 6.381522 6.988794
## 
## $comparison
## NULL
## 
## $groups
##   logfinal groups
## 1 5.715874      a
## 2 5.572780      a
## 
## attr(,"class")
## [1] "group"
library(summariser)
## Warning: package 'summariser' was built under R version 3.4.4
## Loading required package: dplyr
## Warning: package 'dplyr' was built under R version 3.4.4
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
## Loading required package: ggplot2
## Loading required package: lazyeval
## Warning: package 'lazyeval' was built under R version 3.4.4
## Loading required package: plotrix
## Warning: package 'plotrix' was built under R version 3.4.3
nema1<- summarise(group_by(data,fungus),
                   mu = mean(final),
                   sd = sd(final),
                   n = length(final),
                   se = sd/sqrt(n),
                   ciu = mu + (qt(0.025, df = n-1)* se),
                   cil = mu - (qt(0.025, df = n-1)* se))
## Warning: package 'bindrcpp' was built under R version 3.4.4
nema1
## # A tibble: 6 x 7
##   fungus    mu    sd     n    se   ciu   cil
##   <fct>  <dbl> <dbl> <int> <dbl> <dbl> <dbl>
## 1 1       759.  759.    22  162.  422. 1096.
## 2 2       687.  939.    22  200.  270. 1103.
## 3 3      1056.  808.    24  165.  715. 1397.
## 4 4      1193.  667.    24  136.  911. 1474.
## 5 5        NA   NaN     22  NaN    NA    NA 
## 6 6        NA   NaN     24  NaN    NA    NA
box1 <- ggplot(data=data , aes(fungus, nema, fill = final))+ 
  geom_jitter(width = 0.05) + 
  geom_boxplot()+
  labs(x ="Fungi", y = "Nematoide", title = "Feeding preference of Foliar nematode") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1), legend.position = "none")
box1

ggsave("box_fresh_nema.png", width = 7, height=5, dpi = 300)