Untitled

1. KUTUPHANELER :

library(DataExplorer)
library(dplyr)
library(ggmap) 
library(ggplot2)
library(lubridate)
library(sp)
library(tidyverse)

2. VERISETI :

earthquake <- read.csv("deprem.csv") 

head(earthquake,10)
##          id       date        time   lat  long country      city      City
## 1  2.00e+13 20.05.2003 12:17:44 ÖÖ 39.04 40.38  turkey    Bingol    Bingol
## 2  2.01e+13  1.08.2007 12:03:08 ÖÖ 40.79 30.09  turkey   Kocaeli   Kocaeli
## 3  1.98e+13  7.05.1978 12:41:37 ÖÖ 38.58 27.61  turkey    manisa    Manisa
## 4  2.00e+13 22.03.1997 12:31:45 ÖÖ 39.47 36.44  turkey     sivas     Sivas
## 5  2.00e+13  2.04.2000 12:57:38 ÖÖ 40.80 30.24  turkey   sakarya   Sakarya
## 6  2.01e+13 21.01.2005 12:04:03 ÖÖ 37.11 27.75  turkey     mugla     Mugla
## 7  2.01e+13 24.06.2012 12:07:22 ÖÖ 38.75 43.61  turkey       van       Van
## 8  1.99e+13 31.12.1987 12:49:54 ÖÖ 39.43 27.98  turkey balikesir Balikesir
## 9  2.00e+13  7.02.2000 12:11:45 ÖÖ 40.05 34.07  turkey kirikkale Kirikkale
## 10 2.01e+13 28.10.2011 12:47:56 ÖÖ 38.76 43.54  turkey       van       Van
##                   area  direction dist depth  xm  md richter mw ms  mb
## 1           baliklicay       west  0.1  10.0 4.1 4.1     0.0 NA  0 0.0
## 2      bayraktar_izmit       west  0.1   5.2 4.0 3.8     4.0 NA  0 0.0
## 3           hamzabeyli south_west  0.1   0.0 3.7 0.0     0.0 NA  0 3.7
## 4  kahvepinar_sarkisla south_west  0.1  10.0 3.5 3.5     0.0 NA  0 0.0
## 5      meseli_serdivan south_west  0.1   7.0 4.3 4.3     0.0 NA  0 0.0
## 6     demirciler_milas south_west  0.1  32.8 3.5 3.5     0.0 NA  0 0.0
## 7            ilikaynak south_west  0.1   9.4 4.5 0.0     4.5 NA  0 0.0
## 8     dikkonak_bigadic south_east  0.1  26.0 3.8 3.8     0.0 NA  0 0.0
## 9       kocabas_delice south_east  0.1   1.0 3.8 3.8     0.0 NA  0 0.0
## 10         degirmenozu south_east  0.1   3.1 4.3 0.0     4.2 NA  0 4.3
# "jitter" sayilari yuvarlama isleminin onune gecer.

earthquake$lat <- jitter(earthquake$lat)
earthquake$long <- jitter(earthquake$long)
earthquake$xm <- jitter(earthquake$xm)

head(earthquake)
##         id       date        time      lat     long country    city
## 1 2.00e+13 20.05.2003 12:17:44 ÖÖ 39.03907 40.37992  turkey  Bingol
## 2 2.01e+13  1.08.2007 12:03:08 ÖÖ 40.78918 30.08918  turkey Kocaeli
## 3 1.98e+13  7.05.1978 12:41:37 ÖÖ 38.58104 27.60993  turkey  manisa
## 4 2.00e+13 22.03.1997 12:31:45 ÖÖ 39.47111 36.43941  turkey   sivas
## 5 2.00e+13  2.04.2000 12:57:38 ÖÖ 40.79822 30.23821  turkey sakarya
## 6 2.01e+13 21.01.2005 12:04:03 ÖÖ 37.11118 27.74874  turkey   mugla
##      City                area  direction dist depth       xm  md richter
## 1  Bingol          baliklicay       west  0.1  10.0 4.090730 4.1       0
## 2 Kocaeli     bayraktar_izmit       west  0.1   5.2 3.988104 3.8       4
## 3  Manisa          hamzabeyli south_west  0.1   0.0 3.682027 0.0       0
## 4   Sivas kahvepinar_sarkisla south_west  0.1  10.0 3.486467 3.5       0
## 5 Sakarya     meseli_serdivan south_west  0.1   7.0 4.311548 4.3       0
## 6   Mugla    demirciler_milas south_west  0.1  32.8 3.515945 3.5       0
##   mw ms  mb
## 1 NA  0 0.0
## 2 NA  0 0.0
## 3 NA  0 3.7
## 4 NA  0 0.0
## 5 NA  0 0.0
## 6 NA  0 0.0
earthquake <- earthquake %>% 
  mutate(date = dmy(date))
library(tidyverse)

unique(earthquake$country)
##  [1] turkey           azerbaijan       bulgaria         mediterranean   
##  [5] greece           georgia          russia           iran            
##  [9] macedonia        aegeansea        syria            blacksea        
## [13] cyprus_greek     cyprus_turkish   iraq             romania         
## [17] turkiye_iran     turkiye_armenia  turkiye_syria    turkiye_iraq    
## [21] israel           #NAME?           albania          ukrainia        
## [25] turkiye_georgia  egypt           
## 26 Levels: #NAME? aegeansea albania azerbaijan blacksea ... ukrainia
ulke_shiny <- earthquake %>% 
  filter(country == "turkey") %>% 
  summarise(mean = mean(xm),
            frekans = nrow(earthquake %>% filter(country == "turkey")))
turkey <- earthquake %>% 
  filter(country == "turkey") 
plot_missing(turkey)

"mw" değişkenimin büyük kısmı NA değere sahip olduğu için ve kullanmayacağım için 15. degişkenim olan mw yi veri setimden kaldırıyorum.

turkey <- turkey[ ,-16]

turkey <- na.omit(turkey) 

Turkiye verisinin dagilimini gorsel olarak incelemek icin histogram, boxplot gibi grafikleri kullanabiliriz.

hist(turkey$xm, main = "xm - HISTOGRAM", xlab = "Deprem Siddeti", col = "grey", border = "black") 

xm degerlerine ait histogramda 10 grup vardir.Turkiye merkezli depremlerin normal dagilmadigini soyleyebiliriz. Histograma baktigimiz zaman saga carpik bir dagilim gormekteyiz. Verimizin buyuk cogunlugunu 3,4 araligindaki depremler olusturmaktadir. Histograma bakarak basit bir yorum yapmak istersek Turkiyedeki buyuk siddetli depremlerin frekansinin cok fazla oldugu soylenemez.

boxplot(turkey$xm, main = "xm - BOXPLOT", ylab = "Deprem Siddeti", col = "grey", border = "black") 

Box plota baktigimizda ise xm degeri 5 in uzerinde olan depremlerin outliers olarak yer aldigini gormekteyiz. Outlier degerler dagilimdaki aykiri degerleri ifade etmektedir. Yani box plota bakarakta turkiyedeki depremlerin genellikle kucuk siddetli depremler oldugunu soyleyebiliriz.

TOP 10 :

Turkiyede buyuk siddetli depremlerin cok fazla gozlemlenmedigini dagilimlara bakark yorumlamistik. Peki bu outlier degerler hangi sehirlerde ve hangi yillarda gerceklesmis ?

top <- turkey %>% 
  group_by(date) %>%  
  arrange(desc(xm))

top_10 <- head(top,10)

top_10
## # A tibble: 10 x 17
## # Groups:   date [10]
##         id date       time    lat  long country city  City  area  direction
##      <dbl> <date>     <fct> <dbl> <dbl> <fct>   <fct> <fct> <fct> <fct>    
##  1 1.94e13 1939-12-26 12:5~  39.8  39.5 turkey  erzi~ Erzi~ kuru~ north_ea~
##  2 1.98e13 1976-11-24 12:2~  39.1  44.0 turkey  van   Van   yeni~ south_ea~
##  3 2.00e13 1999-08-17 12:0~  40.8  30.0 turkey  Koca~ Koca~ basi~ north_ea~
##  4 1.91e13 1912-08-09 12:2~  40.6  27.2 turkey  teki~ Teki~ erik~ south_ea~
##  5 1.95e13 1953-03-18 12:0~  40.0  27.4 turkey  cana~ Cana~ sogu~ south_we~
##  6 1.94e13 1943-11-26 12:2~  41.0  33.7 turkey  cank~ Cank~ come~ north_we~
##  7 2.01e13 2011-10-23 12:4~  38.7  43.4 turkey  van   Van   yeml~ north_we~
##  8 1.94e13 1944-02-01 12:2~  41.4  32.7 turkey  kara~ Kara~ ince~ north_we~
##  9 2.00e13 1999-11-12 12:5~  40.7  31.2 turkey  duzce Duzce ugur  north_ea~
## 10 1.96e13 1957-05-26 12:3~  40.7  31.0 turkey  duzce Duzce guze~ south_we~
## # ... with 7 more variables: dist <dbl>, depth <dbl>, xm <dbl>, md <dbl>,
## #   richter <dbl>, ms <dbl>, mb <dbl>
plot(top_10$xm, ylab = "xm", xlab = "TOP10", main = "EN SIDDETLI 10 DEPREM", type = "o", lwd = 2, pch = 16, col = "black") # "text" fonksiyonu ile grafikteki noktalari adlandirdim.
text(x=1.7, y=7.9, labels = "Erzincan - 1939", adj = 1, cex = 0.75)
text(x=2.51, y=7.51, labels = "Van - 1976", adj = 1, cex = 0.75)
text(x=3.7, y=7.4, labels = "Kocaeli - 1999", adj = 1, cex = 0.75)
text(x=4.8, y=7.3, labels = "Tekirdag - 1912", adj = 1, cex = 0.75)
text(x=5.6, y=7.22, labels = "Duzce - 1999", adj = 1, cex = 0.75)
text(x=6.5, y=7.22, labels = "Van - 2011", adj = 1, cex = 0.75)
text(x=7.6, y=7.22, labels = "Cankiri - 1943", adj = 1, cex = 0.75)
  text(x=8.7, y=7.22, labels = "Canakkale - 1953", adj = 1, cex = 0.75)
text(x=9.6, y=7.22, labels = "Karabuk - 1944", adj = 1, cex = 0.75)
text(x=9.9, y=7.1, labels = "Tokat - 1916", adj = 1, cex = 0.75)

Turkiyede gerceklesen en siddetli 10 depremi top_10 olarak atadim ve bu degerlerin daha iyi incelenebilmesi icin verileri gorsellestirdim. Grafige baktigimizda ılkemizdeki en siddetli depremin 1939 yilinda Erzincan'da gerceklestigini gormekteyiz. En siddetli depremlerden en yakin tarihte gozlemlenen deprem ise 2011 yilinda Van ilimizde gerceklesmistir.

LOWER :

min <- turkey %>% 
  group_by(country) %>%
  arrange(xm)

head(min)
## # A tibble: 6 x 17
## # Groups:   country [1]
##        id date       time    lat  long country city  City  area  direction
##     <dbl> <date>     <fct> <dbl> <dbl> <fct>   <fct> <fct> <fct> <fct>    
## 1 2.01e13 2006-05-21 12:5~  38.2  42.9 turkey  van   Van   yani~ south_we~
## 2 2.00e13 1997-03-01 12:3~  40.8  35.4 turkey  amas~ Amas~ kire~ east     
## 3 2.01e13 2005-10-05 12:4~  38.0  27.9 turkey  aydin Aydin yuka~ north    
## 4 2.00e13 1999-09-16 12:3~  40.6  30.7 turkey  saka~ Saka~ guzl~ east     
## 5 1.99e13 1991-07-11 12:4~  39.0  29.8 turkey  kuta~ Kuta~ sara~ south_ea~
## 6 2.01e13 2007-05-16 12:4~  39.9  39.3 turkey  gumu~ Gumu~ yesi~ south_we~
## # ... with 7 more variables: dist <dbl>, depth <dbl>, xm <dbl>, md <dbl>,
## #   richter <dbl>, ms <dbl>, mb <dbl>

3. HARITA GORSELLESTIRME :

tur <- readRDS("gadm36_TUR_1_sp (1).rds")

map_data <- tur@data

head(map_data)
##    GID_0 NAME_0   GID_1   NAME_1      VARNAME_1 NL_NAME_1 TYPE_1 ENGTYPE_1
## 1    TUR Turkey TUR.1_1    Adana         Seyhan      <NA>     Il  Province
## 12   TUR Turkey TUR.2_1 Adiyaman       Adıyaman      <NA>     Il  Province
## 23   TUR Turkey TUR.3_1    Afyon Afyonkarahisar      <NA>     Il  Province
## 34   TUR Turkey TUR.4_1     Agri  Ağri|Karaköse      <NA>     Il  Province
## 45   TUR Turkey TUR.5_1  Aksaray           <NA>      <NA>     Il  Province
## 56   TUR Turkey TUR.6_1   Amasya           <NA>      <NA>     Il  Province
##    CC_1 HASC_1
## 1  <NA>  TR.AA
## 12 <NA>  TR.AD
## 23 <NA>  TR.AF
## 34 <NA>  TR.AG
## 45 <NA>  TR.AK
## 56 <NA>  TR.AM
harita_data <- turkey %>% 
  group_by(city) %>% 
  summarise(mean = mean(xm),
            lat = mean(lat),
            long = mean(long))

head(harita_data)
## # A tibble: 6 x 4
##   city            mean   lat  long
##   <fct>          <dbl> <dbl> <dbl>
## 1 adana           3.94  37.2  35.6
## 2 adiyaman        4.03  37.8  38.4
## 3 afyonkarahisar  3.95  38.5  30.6
## 4 agri            4.11  39.6  43.5
## 5 aksaray         3.97  38.3  33.8
## 6 amasya          3.90  40.7  35.5

"harita_data" daki "city" degiskeni ile "map_data" daki "sehirler" uyusmadigi icin "harita_data"daki city degiskenini kaldirdim ve yerine yeni bir city degiskeni atadim.

harita_data <- harita_data[ ,-1]

city <- data.frame(sehir = c("Adana","Adiyaman","Afyon","Agri","Aksaray","Amasya","Ankara","Antalya","Ardahan","Artvin","Aydin","Balikesir","Bartin","Batman","Bayburt","Bilecik","Bingol","Bitlis","Bolu","Burdur","Bursa","挼㸷anakkale","挼㸷ankiri","挼㸷orum","Denizli","Diyarbakir","D昼㹣zce","Edirne","Elaz昼㹤昼㸰","Erzincan","Erzurum","Eskisehir","Gaziantep","Giresun","G昼㹣m昼㹣shane","Hakkari","Hatay","I昼㸰d昼㹤r","Isparta","Istanbul","Izmir","K.Maras","Karab昼㹣k","Karaman","Kars","Kastamonu","Kayseri","Kilis","Kinkkale","Kirklareli","Kirsehir","Kocaeli","Konya","K昼㹣tahya","Malatya","Manisa","Mardin","Mersin","Mugla","Mus","Nevsehir","Nigde","Ordu","Osmaniye","Rize","Sakarya","Samsun","Sanliurfa","Siirt","Sinop","Sirnak","Sivas","Tekirdag","Tokat","Trabzon","Tunceli","Usak","Van","Yalova","Yozgat","Zinguldak"))

harita_data <- cbind(city, harita_data)

head(harita_data, 10)
##       sehir     mean      lat     long
## 1     Adana 3.938486 37.21791 35.64107
## 2  Adiyaman 4.032692 37.82764 38.35934
## 3     Afyon 3.945297 38.46275 30.60081
## 4      Agri 4.105272 39.56543 43.53361
## 5   Aksaray 3.969937 38.33777 33.82968
## 6    Amasya 3.904866 40.71461 35.49715
## 7    Ankara 3.835794 39.70590 32.92808
## 8   Antalya 3.907130 36.87017 30.58052
## 9   Ardahan 4.288303 41.47553 42.88422
## 10   Artvin 4.152689 41.07482 42.06652
tur <- readRDS("gadm36_TUR_1_sp (1).rds")

plot(tur)

tur@data <- tur@data %>% 
  as_tibble()

# Datay昼㹤 tibble dosyas昼㹤 haline getirdik, b昼㸶ylece ilerleyen a昼㹥amalarda tidyverse i攼㸷erisinde yer alan tidyr k昼㹣t昼㹣phanesindeki left_join komutunun kullan昼㹤m昼㹤n昼㹤 kolayla昼㹥t昼㹤rd昼㹤k.


head(tur@data)
## # A tibble: 6 x 10
##   GID_0 NAME_0 GID_1 NAME_1 VARNAME_1 NL_NAME_1 TYPE_1 ENGTYPE_1 CC_1 
##   <chr> <chr>  <chr> <chr>  <chr>     <chr>     <chr>  <chr>     <chr>
## 1 TUR   Turkey TUR.~ Adana  Seyhan    <NA>      Il     Province  <NA> 
## 2 TUR   Turkey TUR.~ Adiya~ Adıyaman  <NA>      Il     Province  <NA> 
## 3 TUR   Turkey TUR.~ Afyon  Afyonkar~ <NA>      Il     Province  <NA> 
## 4 TUR   Turkey TUR.~ Agri   AÄŸri|Kar~ <NA>      Il     Province  <NA> 
## 5 TUR   Turkey TUR.~ Aksar~ <NA>      <NA>      Il     Province  <NA> 
## 6 TUR   Turkey TUR.~ Amasya <NA>      <NA>      Il     Province  <NA> 
## # ... with 1 more variable: HASC_1 <chr>
tur_for <- fortify(tur) # Bu fonksiyon 'sp' paketinin i攼㸷inde.
## Regions defined for each Polygons
id_and_cities<- data_frame(id = rownames(tur@data), sehir = tur@data$NAME_1) %>% 
  left_join(harita_data, by = "sehir")
## Warning: `data_frame()` is deprecated, use `tibble()`.
## This warning is displayed once per session.

## Warning: Column `sehir` joining character vector and factor, coercing into
## character vector
head(id_and_cities)
## # A tibble: 6 x 5
##   id    sehir     mean   lat  long
##   <chr> <chr>    <dbl> <dbl> <dbl>
## 1 1     Adana     3.94  37.2  35.6
## 2 2     Adiyaman  4.03  37.8  38.4
## 3 3     Afyon     3.95  38.5  30.6
## 4 4     Agri      4.11  39.6  43.5
## 5 5     Aksaray   3.97  38.3  33.8
## 6 6     Amasya    3.90  40.7  35.5
final_map <- left_join(tur_for, id_and_cities, by = "id")
ggplot(final_map) +geom_polygon( aes(x = long.x, y = lat.x, group = group, fill = mean), color = "grey") +
coord_map() +theme_void() + labs(title = "ORTALAMA DEPREM DA搼㸰ILIMI")+
scale_fill_distiller(name = "Deprem Siddeti",palette = "Spectral", limits = c(3.7,4.375
), na.value = "white") +
theme(plot.title = element_text(hjust = 0.5),plot.subtitle = element_text(hjust = 0.5))

"Ortalama Deprem Dağılımı" olarak adlandirdigim grafik sayesinde Turkiye haritasi uzerinde sehirlerde gerceklesen depremlerin ortalama siddetini goruyoruz. Bu gorsel ile ortalama deprem siddetlerini goruyoruz. Peki ulkemizde gerceklesen her bir depremi harita uzerinde nokta nokta gosterebilirmiyiz ?

turkiye_dagilim<- turkey %>% 
  filter(lat<=42.01000) %>% 
  filter(long<=44.13992) # Veri icerisindeki aykiri kordinat degerlerini filtreledim.

ggplot(final_map) +
  geom_polygon( aes(x = long.x, y = lat.x, group = group),fill = "white",color = "black") +  
  coord_map() +theme_void() + labs(title = "TURKIYE MERKEZLI DEPREMLER")+
  scale_color_distiller(name = "Deprem Siddeti",palette = "Spectral", limits = c(3.5,8))+
  theme(plot.title = element_text(hjust = 0.5),plot.subtitle = element_text(hjust = 0.5))+
  geom_point( data = turkiye_dagilim,aes(x=long, y = lat,col = xm), alpha = 0.9999)+ 
  labs(x='long', y='lat', fill='xm')

# geom_point( data = turkiye_dagilim,aes(x=long, y = lat,col = xm, alpha = xm))+ 
# geom_point fonksiyonu icindeki alpha argumanini xm yapilirsa grafikteki her nokta deprem siddetine gore daha opak olacaktir. 

"TURKIYE MERKEZLI DEPREMLER" grafigine baktigimizda ise Turkiye sinirlari icerisinde gerceklesen 9882 farkli depremin ulkedeki dagilimini gorebiliyoruz.

Komsu Ulkelerdeki Depremlerin Siddetleri :

ulkeler <- earthquake %>% 
  group_by(country) %>% 
  summarise(ortalama = mean(xm)) 

ulkeler <- ulkeler[-20:-26, ]
ulkeler <- ulkeler[-14:-17, ]
ulkeler <- ulkeler[-7:-9, ]
ulkeler <- ulkeler[-5, ]
ulkeler <- ulkeler[-1:-3, ]

# Her bir ulkede gerceklesen ortalama deprem siddetini ulkeler olarak atadim ve bu veri icindeki komsu ulke olmayan gozlemleri verimden cikardim.

a1 <- ggplot(data = ulkeler, aes(x = country, y = ortalama , col = ortalama))+
  geom_point()+
  theme(axis.text.x = element_text(angle = -90))

ggplot(data = ulkeler, aes(x = country, y = ortalama , col = ortalama))+
  geom_point()+
  theme(axis.text.x = element_text(angle = -90))

ulkeler_frekans <- earthquake %>% 
  group_by(country) %>% 
  count(country)

ulkeler_frekans <- ulkeler_frekans[-20:-26, ]
ulkeler_frekans <- ulkeler_frekans[-14:-17, ]
ulkeler_frekans <- ulkeler_frekans[-7:-9, ]
ulkeler_frekans <- ulkeler_frekans[-5, ]
ulkeler_frekans <- ulkeler_frekans[-1:-3, ]

a2 <- ggplot(data = ulkeler_frekans, aes(x = country, y = n , col = n))+
  geom_point()+
  theme(axis.text.x = element_text(angle = -90))

ggplot(data = ulkeler_frekans, aes(x = country, y = n , col = n))+
  geom_point()+
  theme(axis.text.x = element_text(angle = -90))