Repeated Measures for MLQ

#Loading the dataset that has been reset into a long version
data.test4 <- read.csv("/Volumes/TOSHIBA EXT/Dropbox/ADULT STUDY/adult_study011615.csv")
#Creating a new variable that is the mean of all positive purpose MLQ questions
data.test4$MLQP <- apply(data.test4[, c("MLQ1" ,"MLQ4", "MLQ5", "MLQ6")], 1, mean, na.rm = TRUE)

For lme to work GROUP and ID need to be seen as factors

setwd
## function (dir) 
## .Internal(setwd(dir))
## <bytecode: 0x102db0f78>
## <environment: namespace:base>
data.test4$GROUP <-as.factor(data.test4$GROUP)
data.test4$ID <-as.factor(data.test4$ID)
# Load the psych package
library(psych)

Describe the MLQ variable by the GROUP variable

describeBy(data.test4$MLQP, group = data.test4$GROUP)
## group: 0
##   vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## 1    1 103 4.89 1.18      5    4.92 1.48 1.5   7   5.5 -0.31    -0.23 0.12
## -------------------------------------------------------- 
## group: 1
##   vars  n mean   sd median trimmed  mad min max range  skew kurtosis   se
## 1    1 91 5.15 1.39    5.5    5.26 1.48   2   7     5 -0.49    -0.65 0.15
## -------------------------------------------------------- 
## group: 2
##   vars n mean  sd median trimmed  mad  min  max range  skew kurtosis   se
## 1    1 7 4.82 1.3      5    4.82 1.85 3.25 6.25     3 -0.08    -2.09 0.49

Create a plot that visualizes MLQ variable by the GROUP variable

library(ggplot2)
## 
## Attaching package: 'ggplot2'
## 
## The following object is masked from 'package:psych':
## 
##     %+%
qplot(GROUP, MLQP, data=data.test4, geom="boxplot")

plot of chunk unnamed-chunk-4

# Load the nlme package
library(nlme)

Two way repeated measures

with(data.test4, boxplot(MLQP ~ wave + GROUP))

plot of chunk unnamed-chunk-5 Graphing the Two-Way Interaction.

# Load the nlme package
library(nlme)

I am not sure if I am doing this right

baseline <- lme(MLQP ~ 1, random = ~1 | ID/GROUP/wave, data = data.test4, method = "ML")
                 
MLQPModel <- lme(MLQP ~ GROUP, random = ~1 | ID/GROUP/wave, data = data.test4, method = "ML")
                 
MLQP2Model <- lme(MLQP ~ GROUP + wave, random = ~1 | ID/GROUP/wave, data = data.test4, method = "ML")
                 
fullModel <- lme(MLQP ~ GROUP * wave, random = ~1 | ID/GROUP/wave, data = data.test4, method = "ML")

We again the significance of our models by comparing them from the baseline model using the anova() function.

anova(baseline, MLQPModel, MLQP2Model, fullModel)
##            Model df   AIC   BIC logLik   Test L.Ratio p-value
## baseline       1  5 608.5 625.1 -299.3                       
## MLQPModel      2  7 611.1 634.2 -298.6 1 vs 2   1.446  0.4852
## MLQP2Model     3  8 590.5 616.9 -287.2 2 vs 3  22.620  <.0001
## fullModel      4 10 583.4 616.4 -281.7 3 vs 4  11.099  0.0039
summary(fullModel)
## Warning: NaNs produced
## Linear mixed-effects model fit by maximum likelihood
##  Data: data.test4 
##     AIC   BIC logLik
##   583.4 616.4 -281.7
## 
## Random effects:
##  Formula: ~1 | ID
##         (Intercept)
## StdDev:       1.091
## 
##  Formula: ~1 | GROUP %in% ID
##         (Intercept)
## StdDev:   0.0003546
## 
##  Formula: ~1 | wave %in% GROUP %in% ID
##         (Intercept) Residual
## StdDev:      0.5363   0.3463
## 
## Fixed effects: MLQP ~ GROUP * wave 
##              Value Std.Error  DF t-value p-value
## (Intercept)  4.495    0.2312 108  19.446  0.0000
## GROUP1      -0.353    0.3299   0  -1.070     NaN
## GROUP2      -0.475    0.8558  86  -0.555  0.5801
## wave         0.116    0.0862 108   1.340  0.1829
## GROUP1:wave  0.426    0.1274 108   3.347  0.0011
## GROUP2:wave  0.329    0.3760 108   0.876  0.3832
##  Correlation: 
##             (Intr) GROUP1 GROUP2 wave   GROUP1:
## GROUP1      -0.680                             
## GROUP2      -0.270  0.184                      
## wave        -0.645  0.449  0.174               
## GROUP1:wave  0.454 -0.675 -0.123 -0.679        
## GROUP2:wave  0.148 -0.103 -0.671 -0.229  0.156 
## 
## Standardized Within-Group Residuals:
##      Min       Q1      Med       Q3      Max 
## -1.46596 -0.23039  0.01945  0.29265  1.25978 
## 
## Number of Observations: 201
## Number of Groups: 
##                      ID           GROUP %in% ID wave %in% GROUP %in% ID 
##                      88                      89                     200

```