N.B. This requires the rio and rvest packages in addition to the standard tidyverse. *****
There are a lot of choices of data sets to look at. This caused the author some indecision. We can use R to take care of some of it though. There are 47 pages, and we need 3 examples, though some seem not quite fit for the assignment. Of course we have set the random seed so this is reproducible.
sample(1:47,10)
## [1] 30 16 1 3 4 18 19 22 32 44
Page 30’s first data set posted is the CDC SMART BRFSS (i.e. Metro area Behavioral Risk Factor). For data currency reasons we are using the 2017 data instead of the 2016 data that is suggested in the post. The extracted xpt file is 356 mb so the remote pull and unzip/load takes a fair amount of time.
mmsaRaw <- rio::import("https://www.cdc.gov/brfss/annual_data/2017/files/MMSA2017_XPT.zip")
kable(head(mmsaRaw[1:3]))
| DISPCODE | STATERE1 | SAFETIME |
|---|---|---|
| 1200 | NA | 1 |
| 1200 | NA | 1 |
| 1200 | NA | 1 |
| 1200 | NA | 1 |
| 1200 | NA | 1 |
| 1200 | NA | 1 |
Well that is a lot of data. Unfortunately it looks tidy, there are a lot of data points for each response, but each observation variable is a column, each observation is a row, and each type of observation is broken out (there is only one).
Page 16 does not have a data set posted.
The first data set is the Census PINC-03 data set (All races 25 Years+ Total Work Experience) with the appropriate library R can read the xslx
pincRaw <-rio::import("https://www2.census.gov/programs-surveys/cps/tables/pinc-03/2019/pinc03_1_1_1_1.xls")
## New names:
## * `` -> ...2
## * `` -> ...3
## * `` -> ...4
## * `` -> ...5
## * `` -> ...6
## * ... and 6 more problems
kable(head(pincRaw))
| Table with row headers in column A and column headers in rows 12 through 14 | …2 | …3 | …4 | …5 | …6 | …7 | …8 | …9 | …10 | …11 | …12 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| PINC-03. Educational Attainment–People 25 Years Old and Over, by Total Money Earnings in 2018, Work Experience in 2018, Age, Race, Hispanic Origin, and Sex | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| Data reflect the implementation of an updated processing system that incorporates content from earlier questionnaire redesigns related to income, health insurance, and demographics. | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| For information on confidentiality protection, sampling error, nonsampling error, and definitions, see <www2.census.gov/programs-surveys/cps/techdocs/cpsmar19.pdf>. | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| Source: U.S. Census Bureau, Current Population Survey, 2019 Annual Social and Economic Supplement. | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| (Numbers in thousands. People 25 Years Old and Over as of March of the following year. A.O.I.C. stands for alone or in combination. Median income is calculated using $2,500 income intervals. | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| The Gini index is calculated using micro-sorted data. Medians falling in the upper open-ended interval are plugged with “$250,000”. Standard errors calculated using replicate weights) | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
The data did not import cleanly so we are going to have to do some work. First we slice off some extra rows, and combine and fill the column structure to get to a reasonable table. We then have to trim off the summary data they provide.
pincRaw <- slice(pincRaw,10:n()-1)
pincCols <- t(fill(as.data.frame(t(pincRaw[3:5,])),c(1,2,3) ))
colnames(pincRaw)<- gsub("Degree Graduate (Incl GED)", "Degree", gsub('(\\sNA)|(NA\\s)', '' ,paste(pincCols[1,],pincCols[2,],pincCols[3,], sep=" ")))
pinc <- slice(pincRaw,append(7,9:(n()-5))) %>% select(-Total)
kable(pinc)
| Characteristic | Less Than 9th Grade | High School 9th to 12th Nongrad | High School Graduate (Incl GED) | College Some College No Degree Graduate (Incl GED) | College Associate Degree Graduate (Incl GED) | College Bachelor’s Degree or more Total | College Bachelor’s Degree or more Bachelor’s Degree | College Bachelor’s Degree or more Master’s Degree | College Bachelor’s Degree or more Professional Degree | College Bachelor’s Degree or more Doctorate Degree |
|---|---|---|---|---|---|---|---|---|---|---|
| Without Earnings | 4829 | 7090 | 25591 | 12173 | 6566 | 19457 | 12488 | 5431 | 616 | 923 |
| ..$1 to $2,499 or loss | 115 | 190 | 775 | 607 | 287 | 966 | 613 | 289 | 21 | 44 |
| ..$2,500 to $4,999 | 97 | 201 | 641 | 399 | 241 | 632 | 459 | 138 | 13 | 22 |
| ..$5,000 to $7,499 | 109 | 245 | 900 | 556 | 334 | 933 | 608 | 265 | 16 | 44 |
| ..$7,500 to $9,999 | 106 | 220 | 776 | 375 | 224 | 565 | 371 | 158 | 11 | 25 |
| ..$10,000 to $12,499 | 185 | 396 | 1536 | 826 | 528 | 979 | 688 | 236 | 22 | 32 |
| ..$12,500 to $14,999 | 127 | 209 | 711 | 362 | 206 | 502 | 364 | 113 | 18 | 8 |
| ..$15,000 to $17,499 | 273 | 433 | 1407 | 809 | 435 | 1007 | 750 | 203 | 12 | 42 |
| ..$17,500 to $19,999 | 196 | 339 | 1122 | 612 | 366 | 567 | 411 | 118 | 17 | 21 |
| ..$20,000 to $22,499 | 447 | 579 | 2321 | 1093 | 733 | 1415 | 963 | 341 | 46 | 65 |
| ..$22,500 to $24,999 | 194 | 280 | 1093 | 688 | 429 | 702 | 535 | 136 | 10 | 22 |
| ..$25,000 to $27,499 | 292 | 450 | 2331 | 1218 | 799 | 1502 | 1130 | 290 | 31 | 49 |
| ..$27,500 to $29,999 | 134 | 160 | 1116 | 466 | 379 | 583 | 410 | 148 | 11 | 14 |
| ..$30,000 to $32,499 | 331 | 468 | 2872 | 1616 | 1026 | 2063 | 1592 | 370 | 34 | 66 |
| ..$32,500 to $34,999 | 58 | 82 | 718 | 385 | 313 | 510 | 386 | 103 | 5 | 16 |
| ..$35,000 to $37,499 | 239 | 385 | 2237 | 1187 | 763 | 1979 | 1487 | 391 | 55 | 46 |
| ..$37,500 to $39,999 | 79 | 111 | 889 | 483 | 344 | 732 | 562 | 145 | 6 | 20 |
| ..$40,000 to $42,499 | 156 | 335 | 2235 | 1190 | 929 | 2451 | 1716 | 573 | 60 | 102 |
| ..$42,500 to $44,999 | 30 | 48 | 488 | 300 | 224 | 627 | 448 | 166 | 6 | 8 |
| ..$45,000 to $47,499 | 76 | 153 | 1430 | 884 | 692 | 1835 | 1269 | 491 | 29 | 46 |
| ..$47,500 to $49,999 | 47 | 70 | 589 | 445 | 297 | 927 | 651 | 222 | 13 | 41 |
| ..$50,000 to $52,499 | 149 | 247 | 1985 | 1307 | 1018 | 3035 | 1918 | 914 | 93 | 110 |
| ..$52,500 to $54,999 | 13 | 37 | 306 | 262 | 181 | 717 | 441 | 251 | 15 | 11 |
| ..$55,000 to $57,499 | 41 | 88 | 852 | 572 | 541 | 1783 | 1132 | 533 | 49 | 69 |
| ..$57,500 to $59,999 | 12 | 23 | 229 | 281 | 207 | 660 | 436 | 189 | 14 | 21 |
| ..$60,000 to $62,499 | 74 | 127 | 1342 | 892 | 779 | 2930 | 1922 | 777 | 97 | 133 |
| ..$62,500 to $64,999 | 8 | 27 | 197 | 169 | 120 | 505 | 284 | 180 | 10 | 30 |
| ..$65,000 to $67,499 | 21 | 28 | 674 | 427 | 409 | 1552 | 1004 | 461 | 23 | 64 |
| ..$67,500 to $69,999 | 11 | 9 | 228 | 146 | 148 | 513 | 340 | 134 | 11 | 29 |
| ..$70,000 to $72,499 | 21 | 46 | 678 | 525 | 451 | 1999 | 1230 | 609 | 75 | 85 |
| ..$72,500 to $74,999 | 4 | 3 | 124 | 82 | 85 | 418 | 232 | 151 | 12 | 24 |
| ..$75,000 to $77,499 | 24 | 45 | 527 | 358 | 321 | 1755 | 1126 | 432 | 84 | 113 |
| ..$77,500 to $79,999 | 9 | 19 | 141 | 135 | 127 | 460 | 307 | 121 | 15 | 17 |
| ..$80,000 to $82,499 | 14 | 56 | 550 | 432 | 390 | 1893 | 1111 | 587 | 72 | 123 |
| ..$82,500 to $84,999 | 0 | 1 | 134 | 91 | 52 | 328 | 146 | 141 | 13 | 27 |
| ..$85,000 to $87,499 | 3 | 13 | 249 | 238 | 180 | 1268 | 745 | 405 | 52 | 65 |
| ..$87,500 to $89,999 | 0 | 9 | 52 | 65 | 49 | 274 | 139 | 99 | 4 | 33 |
| ..$90,000 to $92,499 | 7 | 13 | 214 | 235 | 196 | 1498 | 812 | 517 | 34 | 135 |
| ..$92,500 to $94,999 | 0 | 12 | 61 | 44 | 33 | 307 | 190 | 96 | 4 | 18 |
| ..$95,000 to $97,499 | 6 | 12 | 126 | 129 | 97 | 780 | 451 | 250 | 21 | 58 |
| ..$97,500 to $99,999 | 2 | 8 | 94 | 78 | 46 | 332 | 185 | 120 | 12 | 15 |
| ..$100,000 and over | 66 | 102 | 1717 | 1551 | 1198 | 15875 | 7885 | 4924 | 1375 | 1692 |
| Median earnings (dollars) | 25318 | 25280 | 35016 | 37811 | 41834 | 62140 | 57105 | 70241 | 104593 | 92126 |
We simply gather an education column out of the columns with Thousands as the variable and the income ranges excluded. We also coerce the variable to numeric.
pincTidy <- pinc %>% gather(Education, Thousands, -Characteristic)
pincTidy$Thousands <- as.numeric(pincTidy$Thousands)
kable(head(pincTidy))
| Characteristic | Education | Thousands |
|---|---|---|
| Without Earnings | Less Than 9th Grade | 4829 |
| ..$1 to $2,499 or loss | Less Than 9th Grade | 115 |
| ..$2,500 to $4,999 | Less Than 9th Grade | 97 |
| ..$5,000 to $7,499 | Less Than 9th Grade | 109 |
| ..$7,500 to $9,999 | Less Than 9th Grade | 106 |
| ..$10,000 to $12,499 | Less Than 9th Grade | 185 |
We can see the number of members without earnings.
earningless <- pincTidy %>% filter(Characteristic == "Without Earnings") %>% group_by(Education)
kable(earningless)
| Characteristic | Education | Thousands |
|---|---|---|
| Without Earnings | Less Than 9th Grade | 4829 |
| Without Earnings | High School 9th to 12th Nongrad | 7090 |
| Without Earnings | High School Graduate (Incl GED) | 25591 |
| Without Earnings | College Some College No Degree Graduate (Incl GED) | 12173 |
| Without Earnings | College Associate Degree Graduate (Incl GED) | 6566 |
| Without Earnings | College Bachelor’s Degree or more Total | 19457 |
| Without Earnings | College Bachelor’s Degree or more Bachelor’s Degree | 12488 |
| Without Earnings | College Bachelor’s Degree or more Master’s Degree | 5431 |
| Without Earnings | College Bachelor’s Degree or more Professional Degree | 616 |
| Without Earnings | College Bachelor’s Degree or more Doctorate Degree | 923 |
earningless[c(1,9),] %>%ggplot(aes( Education, Thousands)) + geom_bar(stat="identity")
Page 3 isn’t a specific data set, but the unicef data sets. They are very nice, but there are so many we risk overchoice again, We’ll keep looking.
Page 4’s first data post is the Illinois Report card data which is reported to be already tidy.
Page 18 gives us unemployment data from the World Bank. We slice off a row, and take out a number of summary columns.
unempRaw<-rio::import("https://github.com/ErindaB/Other/raw/master/Unemployment%20Rate%2C%20seas.%20adj..xlsx")
## New names:
## * `` -> ...1
unempRaw<-slice(unempRaw, 2:n())
unempRaw <- unempRaw %>% select(-c("Advanced Economies" ,"EMDE East Asia & Pacific" ,"EMDE Europe & Central Asia" ,"Emerging Market and Developing Economies (EMDEs)","High Income Countries" ,"Hong Kong SAR, China" ,"EMDE Latin America & Caribbean" ,"Low-Income Countries (LIC)" ,"Middle-Income Countries (MIC)" ,"EMDE Middle East & N. Africa" ,"EMDE South Asia","EMDE Sub-Saharan Africa","World (WBG members)"))
names(unempRaw)[[1]]<-"Year"
kable(head(unempRaw))
| Year | Argentina | Australia | Austria | Belgium | Bulgaria | Bahrain | Belarus | Brazil | Canada | Switzerland | Chile | China | Colombia | Cyprus | Czech Republic | Germany | Denmark | Dominican Republic | Algeria | Ecuador | Egypt, Arab Rep. | Spain | Estonia | Finland | France | United Kingdom | Greece | Croatia | Hungary | India | Ireland | Iceland | Israel | Italy | Jordan | Japan | Kazakhstan | Korea, Rep. | Sri Lanka | Lithuania | Luxembourg | Latvia | Morocco | Moldova, Rep. | Mexico | North Macedonia | Malta | Netherlands | Norway | New Zealand | Pakistan | Peru | Philippines | Poland | Portugal | Romania | Russian Federation | Saudi Arabia | Singapore | Slovakia | Slovenia | Sweden | Thailand | Tunisia | Turkey | Taiwan, China | Uruguay | United States | Venezuela, RB | Vietnam | South Africa |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1990 | NA | 6.943297 | 5.373002 | 6.55026 | NA | NA | NA | NA | 8.150000 | 0.501328 | NA | NA | NA | NA | NA | NA | NA | NA | 25 | NA | NA | 15.48333 | 0.65 | 3.103129 | 7.625 | 7.091667 | NA | NA | NA | NA | 13.41667 | NA | NA | NA | NA | 2.108117 | NA | NA | 15.9 | NA | NA | NA | NA | NA | NA | NA | NA | NA | 5.783333 | 7.984591 | 3.13 | NA | NA | 3.441667 | NA | NA | NA | NA | NA | NA | NA | 2.239701 | NA | NA | NA | 1.658333 | NA | 5.616667 | NA | NA | NA |
| 1991 | NA | 9.614137 | 5.823096 | 6.439812 | NA | NA | NA | NA | 10.316670 | 1.090451 | NA | NA | NA | NA | NA | 4.864885 | NA | NA | 25 | NA | NA | 15.51667 | 1.475 | 6.666424 | 7.8 | 8.825 | NA | NA | NA | NA | 14.73333 | NA | NA | NA | NA | 2.099018 | NA | NA | 14.7 | NA | NA | NA | NA | NA | NA | NA | NA | NA | 6.041667 | 10.61144 | 6.28 | NA | 10.475 | 9.008333 | NA | NA | NA | NA | 1.75 | 7.05 | NA | 4.005607 | NA | NA | NA | 1.533333 | NA | 6.850000 | NA | NA | NA |
| 1992 | NA | 10.750080 | 5.941711 | 7.088092 | 13.235 | NA | NA | NA | 11.216670 | 2.563105 | NA | NA | NA | NA | NA | 5.764563 | NA | NA | 27 | NA | NA | 17.06667 | 3.725 | 11.796830 | 8.65 | 9.966667 | NA | NA | NA | NA | 15.40000 | NA | NA | NA | NA | 2.151389 | NA | NA | 14.6 | NA | NA | NA | NA | NA | NA | NA | NA | NA | 6.55 | 10.64473 | 5.85 | NA | 9.85 | 12.933330 | NA | 5.45 | NA | NA | 1.8 | 11.31833 | 11.56667 | 7.110956 | NA | NA | NA | 1.500000 | NA | 7.491667 | NA | NA | NA |
| 1993 | NA | 10.866170 | 6.811381 | 8.61913 | 15.85583 | NA | NA | NA | 11.375000 | 4.516116 | NA | NA | NA | NA | 4.333333 | 6.93137 | NA | NA | 23.2 | NA | NA | 20.83333 | 6.55 | 16.384210 | 9.65 | 10.4 | NA | NA | NA | NA | 15.63333 | NA | NA | NA | 19.7 | 2.503291 | NA | NA | 13.8 | 4.191667 | NA | 4.658333 | NA | NA | NA | NA | NA | NA | 6.608333 | 9.800159 | 4.73 | NA | 9.35 | 15.033330 | NA | 9.208333 | NA | NA | 1.675 | 12.855 | 14.575 | 11.146890 | NA | NA | NA | 1.425000 | NA | 6.908333 | NA | NA | NA |
| 1994 | NA | 9.705695 | 6.545480 | 9.753554 | 14.06583 | NA | NA | NA | 10.391670 | 4.718465 | NA | NA | NA | NA | 4.283333 | 7.340639 | NA | NA | 24.4 | NA | NA | 22.05 | 7.55 | 16.534420 | 10.25 | 9.5 | NA | NA | NA | NA | 14.35000 | NA | NA | NA | 15.8 | 2.890953 | NA | NA | 13.1 | 3.625 | NA | 6.358333 | NA | NA | NA | NA | NA | NA | 6 | 8.342465 | 4.84 | NA | 9.55 | 16.508330 | NA | 10.975 | 7.00654 | NA | 1.725 | 14.62917 | 14.55 | 10.766190 | NA | NA | NA | 1.566667 | NA | 6.100000 | NA | NA | NA |
| 1995 | NA | 8.471058 | 6.589767 | 9.674164 | 11.38583 | NA | NA | NA | 9.466667 | 4.232892 | NA | NA | NA | NA | 4.033333 | 7.091997 | NA | NA | 28.1 | NA | NA | 20.79167 | 9.75 | 15.426480 | 9.675 | 8.658333 | NA | NA | NA | NA | 12.28333 | NA | NA | NA | 15.3 | 3.153574 | NA | NA | 12.3 | 6.116667 | 2.600765 | 6.35 | NA | NA | NA | NA | NA | NA | 5.441667 | 6.451948 | 5.37 | NA | 9.5 | 15.225000 | 7.150996 | 9.975 | 8.308334 | NA | 1.725 | 13.68083 | 14.04167 | 10.421390 | NA | NA | NA | 1.808333 | NA | 5.591667 | NA | NA | NA |
We Gather the data by the country columns excluding the year, generating a new column country and the unemployment rate. This puts it in tidy form.
unempTidy <-unempRaw %>% gather(Country, UnempRate, -Year) %>% arrange( Country, Year)
unempTidy$UnempRate <- as.numeric(unempTidy$UnempRate)
## Warning: NAs introduced by coercion
kable(head(unempTidy))
| Year | Country | UnempRate |
|---|---|---|
| 1990 | Algeria | 25.0 |
| 1991 | Algeria | 25.0 |
| 1992 | Algeria | 27.0 |
| 1993 | Algeria | 23.2 |
| 1994 | Algeria | 24.4 |
| 1995 | Algeria | 28.1 |
We can find some world rates if we wish. We can also see the distribution in 2001.
worldRate<-unempTidy %>% group_by(Year) %>% summarize(rate=mean(UnempRate, na.rm = TRUE ))
unempTidy %>% group_by(Year) %>% summarize(rate=mean(UnempRate, na.rm = TRUE )) %>% ggplot(aes(Year,rate)) +geom_bar(stat="identity")
spaceOdyessy <- unempTidy %>% filter(Year==2001) %>% filter(!is.na(UnempRate)) %>% arrange(desc(UnempRate))
spaceOdyessy$Country <- factor(spaceOdyessy$Country, spaceOdyessy$Country)
spaceOdyessy %>% ggplot(aes(Country, UnempRate)) +geom_bar(stat="identity")
Page 19 has no data set
Page 22 is a Wikipedia table for Emmy winners. We use rvest to pull it down, and get it into a table. Thankfully rvest takes care of much of the filling. We splice out years before 1966 as a lot of it is misaligned with “modern” data.
emmyHTML <- read_html("https://en.wikipedia.org/wiki/List_of_Primetime_Emmy_Award_winners")
emmyTable<-rvest::html_table(emmyHTML, fill=TRUE)[[1]]
emmyTable<-emmyTable[emmyTable$Year>=1966,]
kable(head(emmyTable))
| Year | Comedy | Drama | Variety | Lead Comedy Actor | Lead Drama Actor | Lead Comedy Actress | Lead Drama Actress | |
|---|---|---|---|---|---|---|---|---|
| 18 | 1966 | The Dick Van Dyke Show (CBS) | The Fugitive (ABC) | The Andy Williams Show (NBC) | Dick Van Dyke The Dick Van Dyke Show (CBS) | Bill Cosby I Spy (NBC) | Mary Tyler Moore The Dick Van Dyke Show (CBS) | Barbara Stanwyck The Big Valley (ABC) |
| 19 | 1967 | The Monkees (NBC) | Mission: Impossible (CBS) | The Andy Williams Show (NBC) | Don Adams Get Smart (NBC) | Bill Cosby I Spy (NBC) | Lucille Ball The Lucy Show (CBS) | Barbara Bain Mission: Impossible (CBS) |
| 20 | 1968 | Get Smart (NBC) | Mission: Impossible (CBS) | The Andy Williams Show (NBC) | Don Adams Get Smart (NBC) | Bill Cosby I Spy (NBC) | Bill Cosby I Spy (NBC) | Rowan & Martin’s Laugh-In (NBC) |
| 21 | 1969 | Get Smart (NBC) | Mission: Impossible (CBS) | The Andy Williams Show (NBC) | NET Playhouse (NET) | Bill Cosby I Spy (NBC) | Carl Betz Judd for the Defense (ABC) | Hope Lange The Ghost & Mrs. Muir (ABC) |
| 22 | 1970 | My World and Welcome to It (NBC) | Marcus Welby, M.D. (ABC) | The Andy Williams Show (NBC) | The David Frost Show (Syndicated) | William Windom My World and Welcome to It (NBC) | Robert Young Marcus Welby, M.D. (ABC) | Susan Hampshire The Forsyte Saga (NET) |
| 23 | 1971 | All in the Family (CBS) | The Bold Ones: The Senator (NBC) | Singer Presents Burt Bacharach (CBS) | Jack Klugman The Odd Couple (ABC) | Hal Holbrook The Bold Ones: The Senator (NBC) | Jean Stapleton All in the Family (CBS) | Susan Hampshire The First Churchills (Masterpiece Theatre) (PBS) |
First we gather based Category excluding year; then we sort on year. Next we break up the Winner entry to extract the network from the parens
emmyTable<-gather(emmyTable, Category, Winner, -Year) %>% arrange (Year)
emmyTidy<-emmyTable%>% extract(Winner, c("Winner","Network"), "(.+) \\((.+)\\)")
kable(head(emmyTidy))
| Year | Category | Winner | Network |
|---|---|---|---|
| 1966 | Comedy | The Dick Van Dyke Show | CBS |
| 1966 | Drama | The Fugitive | ABC |
| 1966 | Variety | The Andy Williams Show | NBC |
| 1966 | Lead Comedy Actor | Dick Van Dyke The Dick Van Dyke Show | CBS |
| 1966 | Lead Drama Actor | Bill Cosby I Spy | NBC |
| 1966 | Lead Comedy Actress | Mary Tyler Moore The Dick Van Dyke Show | CBS |
Some basic analysis shows that NBC, CBS, ABC, and HBO are in order the most awarded networks. We can also see the changing breakdown in winning networks as years progress. We can see that the non top winners have started taking more Emmys.
networkCount <-emmyTidy %>% group_by(Network) %>% summarize(count=n()) %>% filter(count>8) %>% arrange(desc(count))
kable(networkCount)
| Network | count |
|---|---|
| NBC | 112 |
| CBS | 96 |
| ABC | 83 |
| HBO | 27 |
| AMC | 9 |
emmyTidy %>% filter(Network %in% networkCount$Network) %>% ggplot(aes(x=Year,color=Network)) +geom_bar()