rm(list = ls())
date()
## [1] "Sat Oct  5 18:44:17 2019"
sessionInfo()
## R version 3.6.1 (2019-07-05)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS Mojave 10.14.6
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## loaded via a namespace (and not attached):
##  [1] compiler_3.6.1  magrittr_1.5    tools_3.6.1     htmltools_0.3.6
##  [5] yaml_2.2.0      Rcpp_1.0.2      stringi_1.4.3   rmarkdown_1.16 
##  [9] knitr_1.25      stringr_1.4.0   xfun_0.10       digest_0.6.21  
## [13] evaluate_0.14

Библиотеки

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
# library(quanteda)
library(ggplot2)
#library(stringr)

Загрузка таблицы

load(file = "Vitality.RData")

Опистальеная статистика

summary(Vitality)
##      Name           Sex      Group         Age           Vovlech     
##  Length:46          f:35   actor:16   Min.   :18.00   Min.   :14.00  
##  Class :character   m:11   dance:14   1st Qu.:19.00   1st Qu.:27.00  
##  Mode  :character          music:16   Median :20.00   Median :34.00  
##                                       Mean   :20.13   Mean   :33.52  
##                                       3rd Qu.:21.00   3rd Qu.:39.75  
##                                       Max.   :25.00   Max.   :53.00  
##      Kontr            Risk          Vitality     
##  Min.   :15.00   Min.   : 4.00   Min.   : 36.00  
##  1st Qu.:22.00   1st Qu.:13.00   1st Qu.: 63.25  
##  Median :29.00   Median :16.00   Median : 79.50  
##  Mean   :28.33   Mean   :15.93   Mean   : 77.78  
##  3rd Qu.:33.75   3rd Qu.:18.75   3rd Qu.: 91.50  
##  Max.   :46.00   Max.   :27.00   Max.   :115.00

Сравнение групп

Вовлеченность

ggplot(Vitality, aes(Group, Vovlech)) +
        geom_boxplot()

Vitality %>% 
        group_by(Group) %>% 
        summarise(n = n(), avg = mean(Vovlech), sd = sd(Vovlech))
## # A tibble: 3 x 4
##   Group     n   avg    sd
##   <fct> <int> <dbl> <dbl>
## 1 actor    16  36   10.7 
## 2 dance    14  34.7  7.92
## 3 music    16  30    9.38
summary(
aov(Vovlech ~ Group, Vitality)
)
##             Df Sum Sq Mean Sq F value Pr(>F)
## Group        2    317  158.31   1.769  0.183
## Residuals   43   3849   89.51
kruskal.test(Vovlech ~ Group, Vitality)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Vovlech by Group
## Kruskal-Wallis chi-squared = 3.3392, df = 2, p-value = 0.1883

Нет значимых различий

Контроль

ggplot(Vitality, aes(Group, Kontr)) +
        geom_boxplot()

Контроль

Vitality %>% 
        group_by(Group) %>% 
summarise(n = n(), avg = mean(Kontr),  sd = sd(Kontr))
## # A tibble: 3 x 4
##   Group     n   avg    sd
##   <fct> <int> <dbl> <dbl>
## 1 actor    16  30.5  7.97
## 2 dance    14  29    6.80
## 3 music    16  25.6  8.48
summary(
aov(Kontr ~ Group, Vitality)
)
##             Df Sum Sq Mean Sq F value Pr(>F)
## Group        2  204.2  102.09   1.668  0.201
## Residuals   43 2631.9   61.21

Нет значимых различий

kruskal.test(Kontr ~ Group, Vitality)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Kontr by Group
## Kruskal-Wallis chi-squared = 3.1817, df = 2, p-value = 0.2037

Риск

ggplot(Vitality, aes(Group, Risk)) +
        geom_boxplot()

Риск

Vitality %>% 
        group_by(Group) %>% 
summarise(n = n(), avg = mean(Risk),  sd = sd(Risk))
## # A tibble: 3 x 4
##   Group     n   avg    sd
##   <fct> <int> <dbl> <dbl>
## 1 actor    16  16.9  6.02
## 2 dance    14  16.1  3.21
## 3 music    16  14.8  3.78
summary(
aov(Risk ~ Group, Vitality)
)
##             Df Sum Sq Mean Sq F value Pr(>F)
## Group        2   34.9   17.45   0.841  0.438
## Residuals   43  891.9   20.74

Нет значимых различий

kruskal.test(Risk ~ Group, Vitality)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Risk by Group
## Kruskal-Wallis chi-squared = 1.3323, df = 2, p-value = 0.5137

Жизнестойкость

ggplot(Vitality, aes(Group, Vitality)) +
        geom_boxplot()

Vitality %>% 
        group_by(Group) %>% 
summarise(n = n(), avg = mean(Vitality),  sd = sd(Vitality))
## # A tibble: 3 x 4
##   Group     n   avg    sd
##   <fct> <int> <dbl> <dbl>
## 1 actor    16  83.4  23.1
## 2 dance    14  79.9  16.4
## 3 music    16  70.4  18.3
summary(
aov(Vitality ~ Group, Vitality)
)
##             Df Sum Sq Mean Sq F value Pr(>F)
## Group        2   1439   719.3   1.874  0.166
## Residuals   43  16505   383.8

Нет значимых различий