Contrastación con competidores

# archivos resultado bnReg y rf por cada estacion
# nombre variable predictora

Primero correr el script util-competitors-calc.R que genera el archivo competitors-table.csv

Tabla resultados

## Registered S3 method overwritten by 'rvest':
##   method            from
##   read_xml.response xml2
## 
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
## 
##     group_rows
Station Method MAE r2 RMSE Recall Spec F1
junin buildMdz 17.06 0.72 17.45 0.00 1.00 NA
junin FAO 1.78 0.90 2.23 0.61 0.98 0.7049608
junin RF 0.84 0.97 1.12 0.77 0.99 0.8423645
junin BN 1.61 0.91 2.06 0.58 0.98 0.6880000
tunuyan buildMdz 23.48 0.63 24.00 0.00 1.00 NA
tunuyan FAO 2.35 0.84 2.90 0.79 0.95 0.8331745
tunuyan RF 2.09 0.87 2.66 0.78 0.95 0.8213945
tunuyan BN 2.15 0.86 2.76 0.74 0.96 0.8091451
agua_amarga buildMdz 16.05 0.72 16.47 0.01 1.00 0.0155642
agua_amarga FAO 1.79 0.89 2.15 0.59 0.97 0.6772009
agua_amarga RF 1.60 0.90 2.05 0.59 0.98 0.6894977
agua_amarga BN 1.58 0.90 2.07 0.62 0.97 0.6854664
las_paredes buildMdz 14.78 0.72 15.27 0.00 1.00 NA
las_paredes FAO 2.06 0.86 2.60 0.66 0.97 0.7322971
las_paredes RF 2.10 0.84 2.79 0.53 0.98 0.6653696
las_paredes BN 2.09 0.84 2.76 0.61 0.97 0.6939502
la_llave buildMdz 16.85 0.71 17.35 0.00 1.00 NA
la_llave FAO 2.38 0.85 2.94 0.74 0.96 0.7880435
la_llave RF 2.29 0.85 2.94 0.65 0.96 0.7226174
la_llave BN 2.23 0.85 2.94 0.72 0.95 0.7543624

Gráficos

library(ggplot2)

ggplot(data,aes(y = MAE , x = Method, fill = Station)) + geom_col()

data %>%
  filter(Method != "buildMdz") %>%
  ggplot(aes(y = MAE , x = Method, fill = Station)) + geom_col()

MAE

data %>%
  filter(Method != "buildMdz") %>%
  ggplot(aes(y = MAE , x = Station, fill = Method)) + geom_bar(stat = "identity",position=position_dodge())

RMSE

data %>%
  filter(Method != "buildMdz") %>%
  ggplot(aes(y = RMSE , x = Station, fill = Method)) + geom_bar(stat = "identity",position=position_dodge())

r2

data %>%
  filter(Method != "buildMdz") %>%
  ggplot(aes(y = r2 , x = Station, fill = Method)) + geom_bar(stat = "identity",position=position_dodge())

Recall

data %>%
  filter(Method != "buildMdz") %>%
  ggplot(aes(y = Recall , x = Station, fill = Method)) + geom_bar(stat = "identity",position=position_dodge())

## Spec

data %>%
  filter(Method != "buildMdz") %>%
  ggplot(aes(y = Spec , x = Station, fill = Method)) + geom_bar(stat = "identity",position=position_dodge())

F1

data %>%
  filter(Method != "buildMdz") %>%
  ggplot(aes(y = F1 , x = Station, fill = Method)) + geom_bar(stat = "identity",position=position_dodge())