In this exercise you will learn to plot data using the ggplot2 package. To answer the questions below, use 4.1 Categorical vs. Categorical from Data Visualization with R.
## Loading required package: lubridate
##
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
##
## date
## Loading required package: PerformanceAnalytics
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Registered S3 method overwritten by 'xts':
## method from
## as.zoo.xts zoo
##
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
##
## legend
## Loading required package: quantmod
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## Version 0.4-0 included new data defaults. See ?getSymbols.
## Loading required package: tidyverse
## ── Attaching packages ───────────────── tidyverse 1.2.1 ──
## ✔ ggplot2 3.2.1 ✔ purrr 0.3.2
## ✔ tibble 2.1.3 ✔ dplyr 0.8.3
## ✔ tidyr 0.8.3 ✔ stringr 1.4.0
## ✔ readr 1.3.1 ✔ forcats 0.4.0
## ── Conflicts ──────────────────── tidyverse_conflicts() ──
## ✖ lubridate::as.difftime() masks base::as.difftime()
## ✖ lubridate::date() masks base::date()
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::first() masks xts::first()
## ✖ lubridate::intersect() masks base::intersect()
## ✖ dplyr::lag() masks stats::lag()
## ✖ dplyr::last() masks xts::last()
## ✖ lubridate::setdiff() masks base::setdiff()
## ✖ lubridate::union() masks base::union()
## # A tibble: 22,230 x 8
## # Groups: symbol [3]
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AAPL 1990-01-02 1.26 1.34 1.25 1.33 45799600 1.08
## 2 AAPL 1990-01-03 1.36 1.36 1.34 1.34 51998800 1.09
## 3 AAPL 1990-01-04 1.37 1.38 1.33 1.34 55378400 1.10
## 4 AAPL 1990-01-05 1.35 1.37 1.32 1.35 30828000 1.10
## 5 AAPL 1990-01-08 1.34 1.36 1.32 1.36 25393200 1.11
## 6 AAPL 1990-01-09 1.36 1.36 1.32 1.34 21534800 1.10
## 7 AAPL 1990-01-10 1.34 1.34 1.28 1.29 49929600 1.05
## 8 AAPL 1990-01-11 1.29 1.29 1.23 1.23 52763200 1.00
## 9 AAPL 1990-01-12 1.22 1.24 1.21 1.23 42974400 1.00
## 10 AAPL 1990-01-15 1.23 1.28 1.22 1.22 40434800 0.997
## # … with 22,220 more rows
## # A tibble: 90 x 3
## # Groups: symbol [3]
## symbol yearly.returns year
## <chr> <dbl> <dbl>
## 1 AAPL 0.169 1990
## 2 AAPL 0.323 1991
## 3 AAPL 0.0691 1992
## 4 AAPL -0.504 1993
## 5 AAPL 0.352 1994
## 6 AAPL -0.173 1995
## 7 AAPL -0.345 1996
## 8 AAPL -0.371 1997
## 9 AAPL 2.12 1998
## 10 AAPL 1.51 1999
## # … with 80 more rows
Hint: See the code in 4.3.1 Bar chart (on summary statistics).
Hint: See the code in 4.3.1 Bar chart (on summary statistics).
Hint: See the code in 4.3.1 Bar chart (on summary statistics).
##
## Attaching package: 'scales'
## The following object is masked from 'package:purrr':
##
## discard
## The following object is masked from 'package:readr':
##
## col_factor
Hint: See the code in 4.3.2 Grouped kernel density plots.
Hint: Google how to interpret density plots.
Out of the three stocks IBM is losing the most. the other companies are more accurate with there average returns.
Hint: See the code in 4.3.3 Box plots.
I would choose microsoft because of the amount of outliars.
Hint: Use message, echo and results in the global chunk options. Refer to the RMarkdown Reference Guide.