Read data
data <- read_csv("../datasets/AdvertisingDataV2.csv")
## Parsed with column specification:
## cols(
## adType = col_character(),
## pageViews = col_double(),
## phoneCalls = col_double(),
## reservations = col_double(),
## businessID = col_double(),
## restaurantType = col_character()
## )
data$adType <- as.factor(data$adType)
head(data)
## # A tibble: 6 x 6
## adType pageViews phoneCalls reservations businessID restaurantType
## <fct> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 No Ads 643 44 39 1 chain
## 2 No Ads 621 41 44 2 chain
## 3 No Ads 581 40 38 3 chain
## 4 No Ads 592 35 31 4 chain
## 5 No Ads 648 45 46 5 chain
## 6 No Ads 519 37 41 6 chain
One Way ANOVA
one_way_fit <- aov(data$reservations ~ data$adType)
summary(one_way_fit)
## Df Sum Sq Mean Sq F value Pr(>F)
## data$adType 2 394228 197114 3885 <2e-16 ***
## Residuals 29997 1522018 51
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Two Way ANOVA
two_fay_fit <- aov(data$reservations ~ data$adType + data$restaurantType)
summary(two_fay_fit)
## Df Sum Sq Mean Sq F value Pr(>F)
## data$adType 2 394228 197114 7654 <2e-16 ***
## data$restaurantType 1 749570 749570 29108 <2e-16 ***
## Residuals 29996 772449 26
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1