rm(list = ls())  # remove all objects

## Preparation, setting wd & import csv
setwd(dir = "/Users/daktre/Documents/Official/IPH/PhD/Data/Analysis/Survey analysis/R working folder/")
tum <- read.csv("Batch Tumkur_3_11.csv", header = TRUE)  #load tumkur csv file
rai <- read.csv("BatchRaichur.csv", header = TRUE)  #load raichur csv file

total <- rbind(tum, rai)  #merging the two data frames VERTICALLY. 2 frames must have the same variables even if they are not in the same order. Can be verified in the workspace beside
View(total)  #view merged data frame and check for any problems/mismatched rows/columns
attach(total)

## Add designations categories from new csv file
desig <- read.csv("Total_designations.csv", header = TRUE)
total <- cbind(total, desig)
names(total)  #verify
##   [1] "id"        "a1"        "a2"        "a3"        "a4"       
##   [6] "a5"        "a6"        "b1"        "b2"        "b3"       
##  [11] "b4"        "b5"        "b6"        "b7"        "b8"       
##  [16] "b9"        "b10"       "b11"       "b12"       "b13"      
##  [21] "b14"       "b15"       "b16"       "b17"       "b18"      
##  [26] "b19"       "b20"       "c1"        "c2"        "c3"       
##  [31] "c4"        "c5"        "c6"        "c7"        "c8"       
##  [36] "c9"        "c10"       "c11"       "c12"       "c13"      
##  [41] "c14"       "c15"       "c16"       "c17"       "c18"      
##  [46] "d1"        "d2"        "d3"        "d4"        "d5"       
##  [51] "d6"        "d7"        "d8"        "d9"        "d10"      
##  [56] "e1"        "e2"        "e3"        "e4"        "e51"      
##  [61] "e52"       "e53"       "e54"       "e55"       "e56"      
##  [66] "e57"       "e58"       "e59"       "e60"       "e61"      
##  [71] "e62"       "e63"       "e64"       "e65"       "e66"      
##  [76] "e6"        "e7"        "e8"        "e9"        "e10"      
##  [81] "f1"        "f2"        "f3"        "f4"        "f5"       
##  [86] "f6"        "f7"        "f8"        "f9"        "f10a"     
##  [91] "f10b"      "f10bb"     "f10c"      "f10cc"     "f11a"     
##  [96] "f11b"      "f11c"      "f11d"      "f11e"      "f11f"     
## [101] "f11ff"     "f11g"      "f12"       "f13a"      "f13b"     
## [106] "f13bb"     "f13c"      "f13cc"     "f14a"      "f14b"     
## [111] "f14c"      "f14d"      "f14e"      "f14f"      "f14ff"    
## [116] "f14g"      "g1"        "g2"        "g3"        "g4"       
## [121] "g5"        "g6"        "g7"        "g8"        "g9"       
## [126] "g10"       "g11"       "g12"       "g13"       "g14"      
## [131] "h1"        "h2"        "h3"        "h4a"       "h4b"      
## [136] "h4c"       "h4d"       "h4e"       "h4f"       "h5"       
## [141] "h6"        "h7"        "h8"        "h9"        "h10"      
## [146] "desig_cat"


## Subsetting
tumkur <- total[c(1:65), ]
raichur <- total[c(66:92), ]

## Describe respondents

tumres <- length(which(total$a1 < 200))  #Number of respondents in Tumkur
raires <- length(which(total$a1 > 199))  #Number of respondents in Raichur
rr_tum <- tumres * 100/69  #69 health managers in Tumkur. Calculate response rate for survey in Tumkur
rr_rai <- raires * 100/36  #36 health managers in Raichur Calculate response rate for survey in Raichur
table(total$h1)  #Table with male and female respondents
## 
##  1  2 
## 71 21
male_perc <- length(which(total$h1 == TRUE)) * 100/length(total$h1)  #Percentage of male respondents in both districts
male_perc_tum <- length(which(tumkur$h1 == TRUE)) * 100/length(tumkur$h1)  # Percentage of male respondents in Tumkur
male_perc_rai <- length(which(raichur$h1 == TRUE)) * 100/length(raichur$h1)  # Percentage of male respondents in Raichur

## Format age as dd/mm/yyyy and add as h22
h2_yearonly <- as.numeric(format(as.Date(h2, format = "%d/%m/%y"), format = "%y"))  #convert vector of dates in dd/mm/yyyy format into a numeric vector of birth years
h22 <- 2012 - (1900 + h2_yearonly)  #Get age by subtracting birth year from 2012. But, add 1900 to the vector to get birth year cos the survey used yy instead of yyyy
View(h22)

## h22 needs to be cleaned cos some values >100 as illogical date was
## entered instead of empty values
h22clearn <- replace(h22, c(which(h22 > 100)), c(NA, NA))
View(h22clearn)
which(h22clearn > 100)  #Test again
## integer(0)
which(h22clearn == NA)  #Test again. This one fails. NA is ignored?
## integer(0)

# Add h22clearn to the total dataframe
total <- cbind(total, h22clearn)
names(total)  #Test all variables
##   [1] "id"        "a1"        "a2"        "a3"        "a4"       
##   [6] "a5"        "a6"        "b1"        "b2"        "b3"       
##  [11] "b4"        "b5"        "b6"        "b7"        "b8"       
##  [16] "b9"        "b10"       "b11"       "b12"       "b13"      
##  [21] "b14"       "b15"       "b16"       "b17"       "b18"      
##  [26] "b19"       "b20"       "c1"        "c2"        "c3"       
##  [31] "c4"        "c5"        "c6"        "c7"        "c8"       
##  [36] "c9"        "c10"       "c11"       "c12"       "c13"      
##  [41] "c14"       "c15"       "c16"       "c17"       "c18"      
##  [46] "d1"        "d2"        "d3"        "d4"        "d5"       
##  [51] "d6"        "d7"        "d8"        "d9"        "d10"      
##  [56] "e1"        "e2"        "e3"        "e4"        "e51"      
##  [61] "e52"       "e53"       "e54"       "e55"       "e56"      
##  [66] "e57"       "e58"       "e59"       "e60"       "e61"      
##  [71] "e62"       "e63"       "e64"       "e65"       "e66"      
##  [76] "e6"        "e7"        "e8"        "e9"        "e10"      
##  [81] "f1"        "f2"        "f3"        "f4"        "f5"       
##  [86] "f6"        "f7"        "f8"        "f9"        "f10a"     
##  [91] "f10b"      "f10bb"     "f10c"      "f10cc"     "f11a"     
##  [96] "f11b"      "f11c"      "f11d"      "f11e"      "f11f"     
## [101] "f11ff"     "f11g"      "f12"       "f13a"      "f13b"     
## [106] "f13bb"     "f13c"      "f13cc"     "f14a"      "f14b"     
## [111] "f14c"      "f14d"      "f14e"      "f14f"      "f14ff"    
## [116] "f14g"      "g1"        "g2"        "g3"        "g4"       
## [121] "g5"        "g6"        "g7"        "g8"        "g9"       
## [126] "g10"       "g11"       "g12"       "g13"       "g14"      
## [131] "h1"        "h2"        "h3"        "h4a"       "h4b"      
## [136] "h4c"       "h4d"       "h4e"       "h4f"       "h5"       
## [141] "h6"        "h7"        "h8"        "h9"        "h10"      
## [146] "desig_cat" "h22clearn"
attach(total)  #attach new updated data frame, total
## The following object is masked _by_ .GlobalEnv:
## 
##     h22clearn
## The following objects are masked from total (position 3):
## 
##     a1, a2, a3, a4, a5, a6, b1, b10, b11, b12, b13, b14, b15, b16,
##     b17, b18, b19, b2, b20, b3, b4, b5, b6, b7, b8, b9, c1, c10,
##     c11, c12, c13, c14, c15, c16, c17, c18, c2, c3, c4, c5, c6,
##     c7, c8, c9, d1, d10, d2, d3, d4, d5, d6, d7, d8, d9, e1, e10,
##     e2, e3, e4, e51, e52, e53, e54, e55, e56, e57, e58, e59, e6,
##     e60, e61, e62, e63, e64, e65, e66, e7, e8, e9, f1, f10a, f10b,
##     f10bb, f10c, f10cc, f11a, f11b, f11c, f11d, f11e, f11f, f11ff,
##     f11g, f12, f13a, f13b, f13bb, f13c, f13cc, f14a, f14b, f14c,
##     f14d, f14e, f14f, f14ff, f14g, f2, f3, f4, f5, f6, f7, f8, f9,
##     g1, g10, g11, g12, g13, g14, g2, g3, g4, g5, g6, g7, g8, g9,
##     h1, h10, h2, h3, h4a, h4b, h4c, h4d, h4e, h4f, h5, h6, h7, h8,
##     h9, id

# Age
mean(h22clearn, na.rm = TRUE)
## [1] 48.5
median(h22clearn, na.rm = TRUE)
## [1] 51
names(tumkur)
##   [1] "id"        "a1"        "a2"        "a3"        "a4"       
##   [6] "a5"        "a6"        "b1"        "b2"        "b3"       
##  [11] "b4"        "b5"        "b6"        "b7"        "b8"       
##  [16] "b9"        "b10"       "b11"       "b12"       "b13"      
##  [21] "b14"       "b15"       "b16"       "b17"       "b18"      
##  [26] "b19"       "b20"       "c1"        "c2"        "c3"       
##  [31] "c4"        "c5"        "c6"        "c7"        "c8"       
##  [36] "c9"        "c10"       "c11"       "c12"       "c13"      
##  [41] "c14"       "c15"       "c16"       "c17"       "c18"      
##  [46] "d1"        "d2"        "d3"        "d4"        "d5"       
##  [51] "d6"        "d7"        "d8"        "d9"        "d10"      
##  [56] "e1"        "e2"        "e3"        "e4"        "e51"      
##  [61] "e52"       "e53"       "e54"       "e55"       "e56"      
##  [66] "e57"       "e58"       "e59"       "e60"       "e61"      
##  [71] "e62"       "e63"       "e64"       "e65"       "e66"      
##  [76] "e6"        "e7"        "e8"        "e9"        "e10"      
##  [81] "f1"        "f2"        "f3"        "f4"        "f5"       
##  [86] "f6"        "f7"        "f8"        "f9"        "f10a"     
##  [91] "f10b"      "f10bb"     "f10c"      "f10cc"     "f11a"     
##  [96] "f11b"      "f11c"      "f11d"      "f11e"      "f11f"     
## [101] "f11ff"     "f11g"      "f12"       "f13a"      "f13b"     
## [106] "f13bb"     "f13c"      "f13cc"     "f14a"      "f14b"     
## [111] "f14c"      "f14d"      "f14e"      "f14f"      "f14ff"    
## [116] "f14g"      "g1"        "g2"        "g3"        "g4"       
## [121] "g5"        "g6"        "g7"        "g8"        "g9"       
## [126] "g10"       "g11"       "g12"       "g13"       "g14"      
## [131] "h1"        "h2"        "h3"        "h4a"       "h4b"      
## [136] "h4c"       "h4d"       "h4e"       "h4f"       "h5"       
## [141] "h6"        "h7"        "h8"        "h9"        "h10"      
## [146] "desig_cat"
# re-run subsetting to include the new column
tumkur <- total[c(1:65), ]
raichur <- total[c(66:92), ]
names(tumkur)  #verify
##   [1] "id"        "a1"        "a2"        "a3"        "a4"       
##   [6] "a5"        "a6"        "b1"        "b2"        "b3"       
##  [11] "b4"        "b5"        "b6"        "b7"        "b8"       
##  [16] "b9"        "b10"       "b11"       "b12"       "b13"      
##  [21] "b14"       "b15"       "b16"       "b17"       "b18"      
##  [26] "b19"       "b20"       "c1"        "c2"        "c3"       
##  [31] "c4"        "c5"        "c6"        "c7"        "c8"       
##  [36] "c9"        "c10"       "c11"       "c12"       "c13"      
##  [41] "c14"       "c15"       "c16"       "c17"       "c18"      
##  [46] "d1"        "d2"        "d3"        "d4"        "d5"       
##  [51] "d6"        "d7"        "d8"        "d9"        "d10"      
##  [56] "e1"        "e2"        "e3"        "e4"        "e51"      
##  [61] "e52"       "e53"       "e54"       "e55"       "e56"      
##  [66] "e57"       "e58"       "e59"       "e60"       "e61"      
##  [71] "e62"       "e63"       "e64"       "e65"       "e66"      
##  [76] "e6"        "e7"        "e8"        "e9"        "e10"      
##  [81] "f1"        "f2"        "f3"        "f4"        "f5"       
##  [86] "f6"        "f7"        "f8"        "f9"        "f10a"     
##  [91] "f10b"      "f10bb"     "f10c"      "f10cc"     "f11a"     
##  [96] "f11b"      "f11c"      "f11d"      "f11e"      "f11f"     
## [101] "f11ff"     "f11g"      "f12"       "f13a"      "f13b"     
## [106] "f13bb"     "f13c"      "f13cc"     "f14a"      "f14b"     
## [111] "f14c"      "f14d"      "f14e"      "f14f"      "f14ff"    
## [116] "f14g"      "g1"        "g2"        "g3"        "g4"       
## [121] "g5"        "g6"        "g7"        "g8"        "g9"       
## [126] "g10"       "g11"       "g12"       "g13"       "g14"      
## [131] "h1"        "h2"        "h3"        "h4a"       "h4b"      
## [136] "h4c"       "h4d"       "h4e"       "h4f"       "h5"       
## [141] "h6"        "h7"        "h8"        "h9"        "h10"      
## [146] "desig_cat" "h22clearn"
mean(tumkur$h22clearn, na.rm = TRUE)
## [1] 48.67
mean(raichur$h22clearn, na.rm = TRUE)
## [1] 48.11

## Subsetting by designation
View(e3)

# Age histograms
hist(h22clearn, breaks = 5, col = "gray", border = "black", main = "Age distribution among survey respondents", 
    xlab = "Age", ylab = "Number of health managers")

plot of chunk unnamed-chunk-1

hist(tumkur$h22clearn, breaks = 5, col = "gray", border = "black", main = "Age distribution among survey respondents in Tumkur", 
    xlab = "Age", ylab = "Number of health managers")

plot of chunk unnamed-chunk-1

hist(raichur$h22clearn, breaks = 5, col = "gray", border = "black", main = "Age distribution among survey respondents in Raichur", 
    xlab = "Age", ylab = "Number of health managers")

plot of chunk unnamed-chunk-1

agelessthan40 <- c(length(c(which(h22clearn < 40))), length(c(which(h22clearn > 
    40))))
agelessthan40
## [1] 16 73
percentabove40 <- agelessthan40[2] * 100/length(h22clearn)
percentabove40
## [1] 79.35

# schooling
View(h3)
barplot(table(h3), main = "Health managers' educational background in Raichur & Tumkur", 
    names.arg = c("Rural", "Semi-rural", "Semi-urban", "Non-bangalore cities", 
        "Bangalore"), border = TRUE, ylab = "number of health managers")  #Explore bar plot
h33 <- as.data.frame(table(h3))  # Make the table as a new data frame
View(h33)  #Verify
h33$Freq  #Verify that this is a data frame. If it were a matrix, it would have said this cannot be done on atomic vector
## [1] 37 30  9 13  3
highschool <- c("Rural", "Semi-urban", "Urban")  #Decide logical categories. Shrink to these three.
hsnumber <- c(h33$Freq[1] + h33$Freq[2], h33$Freq[3], h33$Freq[4] + h33$Freq[5])  #Shrink freqquency values to these same categories
hsnumber  #Verify vector
## [1] 67  9 16
Schooling <- data.frame(Hsattend = highschool, Number = hsnumber)  #Make new data frame
barplot(Schooling$Number, names.arg = highschool, main = "Raichur & Tumkur health managers' characteristics by high-school attendance", 
    border = TRUE, xlab = "High school attendance", ylab = "Number")
prop.table(Schooling$Number)
## [1] 0.72826 0.09783 0.17391

# Educational qualifications
names(total)  #To verify the varibale names
##   [1] "id"        "a1"        "a2"        "a3"        "a4"       
##   [6] "a5"        "a6"        "b1"        "b2"        "b3"       
##  [11] "b4"        "b5"        "b6"        "b7"        "b8"       
##  [16] "b9"        "b10"       "b11"       "b12"       "b13"      
##  [21] "b14"       "b15"       "b16"       "b17"       "b18"      
##  [26] "b19"       "b20"       "c1"        "c2"        "c3"       
##  [31] "c4"        "c5"        "c6"        "c7"        "c8"       
##  [36] "c9"        "c10"       "c11"       "c12"       "c13"      
##  [41] "c14"       "c15"       "c16"       "c17"       "c18"      
##  [46] "d1"        "d2"        "d3"        "d4"        "d5"       
##  [51] "d6"        "d7"        "d8"        "d9"        "d10"      
##  [56] "e1"        "e2"        "e3"        "e4"        "e51"      
##  [61] "e52"       "e53"       "e54"       "e55"       "e56"      
##  [66] "e57"       "e58"       "e59"       "e60"       "e61"      
##  [71] "e62"       "e63"       "e64"       "e65"       "e66"      
##  [76] "e6"        "e7"        "e8"        "e9"        "e10"      
##  [81] "f1"        "f2"        "f3"        "f4"        "f5"       
##  [86] "f6"        "f7"        "f8"        "f9"        "f10a"     
##  [91] "f10b"      "f10bb"     "f10c"      "f10cc"     "f11a"     
##  [96] "f11b"      "f11c"      "f11d"      "f11e"      "f11f"     
## [101] "f11ff"     "f11g"      "f12"       "f13a"      "f13b"     
## [106] "f13bb"     "f13c"      "f13cc"     "f14a"      "f14b"     
## [111] "f14c"      "f14d"      "f14e"      "f14f"      "f14ff"    
## [116] "f14g"      "g1"        "g2"        "g3"        "g4"       
## [121] "g5"        "g6"        "g7"        "g8"        "g9"       
## [126] "g10"       "g11"       "g12"       "g13"       "g14"      
## [131] "h1"        "h2"        "h3"        "h4a"       "h4b"      
## [136] "h4c"       "h4d"       "h4e"       "h4f"       "h5"       
## [141] "h6"        "h7"        "h8"        "h9"        "h10"      
## [146] "desig_cat" "h22clearn"
h4ab <- c(h4a + h4b)  #combine UG and PG docs. 1 is UG;2 is PG

h4ee <- c(h4e + h4f)
h4ee[which(h4ee > 1)] <- 1  #replace all >1 values with 1 as the last 2 cats can be merged while presenting results
h4ad <- c(which(h4d[which(h4a == 1)] == 1))  #which medical graduates also had management degree
h4bd <- c(which(h4d[which(h4b == 1)] == 1))  #which medical pgs also had management degree
h4ad
## [1]  6 26
h4bd
## [1]  6 21
edu <- c("Med grad", "Med Sp'list", "Nursing", "M'gmt", "Other grad")
edutot <- c(sum(h4a), abs(sum(h4b - h4a)), sum(h4c), sum(h4d), abs(sum(h4ee - 
    h4d)))
prop.table(edutot)
## [1] 0.47674 0.11628 0.03488 0.20930 0.16279
barplot(edutot, names.arg = edu, main = "Educational qualifications of health managers (Raichur & Tumkur)", 
    border = TRUE, xlab = "Educational Qualifications", ylab = "Number")

## Medical college
mcol <- as.data.frame(table(h5))
mcol_leg <- c("Non med.", "Govt.", "Pvt.")
barplot(mcol$Freq, names.arg = mcol_leg, main = "Medical education of health managers in Raichur & Tumkur", 
    border = TRUE, ylab = "Number")

## 4 barplots in 1 figure
par(mfrow = c(2, 2))
barplot(mcol$Freq, width = 0.15, names.arg = mcol_leg, main = "Medical education of health managers in \nRaichur & Tumkur", 
    border = TRUE, ylab = "Number", xlim = c(0, 1))
barplot(edutot, names.arg = edu, width = 0.15, main = "Educational qualifications of health managers in \nRaichur & Tumkur", 
    border = TRUE, xlab = "Educational Qualifications", ylab = "Number", xlim = c(0, 
        1))
hist(h22clearn, breaks = 5, col = "gray", border = "black", main = "Age distribution of health managers", 
    xlab = "Age", ylab = "Number of health managers")
barplot(Schooling$Number, width = 0.15, names.arg = highschool, main = "Raichur & Tumkur health managers' characteristics \nby high-school attendance", 
    border = TRUE, xlab = "High school attendance", ylab = "Number", xlim = c(0, 
        1))

plot of chunk unnamed-chunk-1


## Years in service
h66 <- 2013 - h6  #Make separate vector with years of service
h66  #verify
##  [1] 27 39 28 25 29 28 26 24 26 31 37 17 29  7 33 22 38 34 36 16 31 40 16
## [24] 24 31 16 31  7 16 37 19 38 29 37 27 30 31  5  5 17 37 16 11 13  5 37
## [47] 37  4  4  4  3  5  5 36 32 41 32 20 22 32 34 16 17 38 28 33  7 21 17
## [70]  4 18 18 18 41  5 37 35  4 26 43 27 34 34  8  5 38  4 21 36 18 27 21
total <- cbind(total, h66)  #add this column to the data frame
names(total)  #verify
##   [1] "id"        "a1"        "a2"        "a3"        "a4"       
##   [6] "a5"        "a6"        "b1"        "b2"        "b3"       
##  [11] "b4"        "b5"        "b6"        "b7"        "b8"       
##  [16] "b9"        "b10"       "b11"       "b12"       "b13"      
##  [21] "b14"       "b15"       "b16"       "b17"       "b18"      
##  [26] "b19"       "b20"       "c1"        "c2"        "c3"       
##  [31] "c4"        "c5"        "c6"        "c7"        "c8"       
##  [36] "c9"        "c10"       "c11"       "c12"       "c13"      
##  [41] "c14"       "c15"       "c16"       "c17"       "c18"      
##  [46] "d1"        "d2"        "d3"        "d4"        "d5"       
##  [51] "d6"        "d7"        "d8"        "d9"        "d10"      
##  [56] "e1"        "e2"        "e3"        "e4"        "e51"      
##  [61] "e52"       "e53"       "e54"       "e55"       "e56"      
##  [66] "e57"       "e58"       "e59"       "e60"       "e61"      
##  [71] "e62"       "e63"       "e64"       "e65"       "e66"      
##  [76] "e6"        "e7"        "e8"        "e9"        "e10"      
##  [81] "f1"        "f2"        "f3"        "f4"        "f5"       
##  [86] "f6"        "f7"        "f8"        "f9"        "f10a"     
##  [91] "f10b"      "f10bb"     "f10c"      "f10cc"     "f11a"     
##  [96] "f11b"      "f11c"      "f11d"      "f11e"      "f11f"     
## [101] "f11ff"     "f11g"      "f12"       "f13a"      "f13b"     
## [106] "f13bb"     "f13c"      "f13cc"     "f14a"      "f14b"     
## [111] "f14c"      "f14d"      "f14e"      "f14f"      "f14ff"    
## [116] "f14g"      "g1"        "g2"        "g3"        "g4"       
## [121] "g5"        "g6"        "g7"        "g8"        "g9"       
## [126] "g10"       "g11"       "g12"       "g13"       "g14"      
## [131] "h1"        "h2"        "h3"        "h4a"       "h4b"      
## [136] "h4c"       "h4d"       "h4e"       "h4f"       "h5"       
## [141] "h6"        "h7"        "h8"        "h9"        "h10"      
## [146] "desig_cat" "h22clearn" "h66"
summary(h66)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     3.0    16.0    26.0    23.6    34.0    43.0
boxplot(h66[which(desig == "dhm")])

## Violin plots Tryiung violinplots for this. This is chumma done. No
## point really to have 'kernel density ploting' for this!  Violin plot
## for years of experience by designation
library(vioplot)
## Loading required package: sm
## Package `sm', version 2.2-4.1 Copyright (C) 1997, 2000, 2005, 2007, 2008,
## A.W.Bowman & A.Azzalini Type help(sm) for summary information
viol1 <- h66[desig == "dhm"]
viol2 <- h66[desig == "thm"]
viol3 <- h66[desig == "thom"]
vioplot(viol1, viol2, viol3, names = c("Dt. hm", "Taluka hm", "Taluka hosp manager"), 
    col = "gray")
title("Violin plots of years of experience of health managers")

# Violin plots for age by designation
library(vioplot)
viol1_age <- h22clearn[desig == "dhm"]
viol2_age <- h22clearn[desig == "thm"]
viol3_age <- h22clearn[desig == "thom"]
viol2_age[1] <- as.integer(mean(viol2_age, na.rm = TRUE))  #Assume mean age for 2 NA of THOs
viol2_age[35] <- as.integer(mean(viol2_age, na.rm = TRUE))  #Assume mean age for 2 NA of THOs
vioplot(viol1_age, viol2_age, viol3_age, names = c("Dt. hm", "Taluka hm", "Taluka hosp manager"), 
    col = "gray")
title("Violin plots of age of health managers")

####### Survey responses

## Module B

# B1
par(mfrow = c(1, 1))  #1 graph per page

plot of chunk unnamed-chunk-1

b1_resp <- as.data.frame(table(b1))  #make data frome of table
barplot(b1_resp$Freq, names.arg = c("NA", "Evaluate", "Dt/State", "Planning", 
    "Assesment"), border = TRUE, main = "Health managers perception on \nrole of plans under NRHM", 
    xlab = "Responses", ylab = "Number")

plot of chunk unnamed-chunk-1

prop.table(b1_resp$Freq)
## [1] 0.03261 0.04348 0.19565 0.64130 0.08696

# grouped bar plot to compare responses between Tumkur and Raichur. THIS
# ONE ABORTED. DONT RUN. KEPT FOR THE RECORD!!!
# tumkurb1<-as.data.frame(table(tumkur$b1))
# raichurb1<-as.data.frame(table(raichur$b1))
# b1compare<-table(tumkurb1$Freq, raichurb1$Freq) barplot(b1compare,
# names.arg=c('Evaluate','Dt/State','Planning','Assesment'), border=TRUE,
# main='Perception on NRHM planning among \nhealth managers in Tumkur
# compared to Raichur', legend=names(b1compare), beside=TRUE)

# B2
table(b2)
## b2
##  1  2  3  4  5 
##  2 11  9 35 35
b2_resp <- as.data.frame(table(b2))  #make data frome of table
barplot(b2_resp$Freq, names.arg = c("State", "Dt.", "Taluka", "PHC", "VHSC"), 
    border = TRUE, main = "Most peripheral level for planning", xlab = "Responses", 
    ylab = "Number")

plot of chunk unnamed-chunk-1


# B2 stacked bar
b2_resp_tum <- as.data.frame(table(tumkur$b2))  #make data frome of table
b2_resp_rai <- as.data.frame(table(raichur$b2))  #make data frome of table
b2compare <- table(b2_resp_tum$Freq, b2_resp_rai$Freq)
barplot(b2compare, names.arg = c("State", "Dt.", "Taluka", "PHC", "VHSC"), border = TRUE, 
    main = "Most peripheral level for planning", xlab = "Responses", ylab = "Number")

plot of chunk unnamed-chunk-1


# Stacked bar trials using qplot/ggplot
library(ggplot2)
qplot(factor(b2), data = total, geom = "bar", fill = factor(desig_cat))  #Replace b4 & e1 in this line for stacked barplots

plot of chunk unnamed-chunk-1

qplot(b1, b2, data = total)

plot of chunk unnamed-chunk-1