(IQR <- 177.8 - 163.8)
## [1] 14
# For 180
x = 180
mu <- 171.1
sigma <- 9.4
(z <- (x - mu)/sigma)
## [1] 0.9468085
# For 155 cm
x = 155
mu <- 171.1
sigma <- 9.4
(z <- (x - mu)/sigma)
## [1] -1.712766
sigma <- 9.4
n <- 507
(variability <- sigma/sqrt(n))
## [1] 0.4174687
v1 <- 80.31
v2 <- 89.11
(MARGIN<-(v2 - v1)/2)
## [1] 4.4
x <- 32
n <- 36
avg <- 30.69
sd <- 4.31
se <- sd/sqrt(n)
z <- (avg - x)/se
(p <- pnorm(z))
## [1] 0.0341013
(v1 <- avg - 1.65 * se)
## [1] 29.50475
(v2 <- avg + 1.65 * se)
## [1] 31.87525
x <- 100
n <- 36
avg <- 118.2
sd <- 6.5
se <- sd/sqrt(n)
(z = (avg - x)/se)
## [1] 16.8
(v1 <- avg - 1.65 * se)
## [1] 116.4125
(v2 <- avg + 1.65 * se)
## [1] 119.9875
1 - pnorm(q = 10500, mean = 9000, sd = 1000)
## [1] 0.0668072
(s <- 1000/sqrt(15))
## [1] 258.1989
pnorm(10500, 9000, 1000/sqrt(15), lower.tail = FALSE)
## [1] 3.133452e-09
(Z <- (10500-9000)/258.20)
## [1] 5.80945
x <- 4000:14000
y1 <- dnorm(x, 9000, 1000)
y2 <- dnorm(x, 9000, 258)
plot(x,y1,type="l",col="orange")
lines(x,y2,col="blue")